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Bulk density is a key determinant of numerous physical characteristics in peat including hydraulic conductivity,
smouldering combustion vulnerability, and water retention in the unsaturated zone. A Markov chain model
based on peat type (primarily Sphagnum, sedge, and sylvic peats)was applied to the depth-wise structure of bo-
real peatlands using 143 cores fromwestern Canada as source data. Bulk density and peat typeweremodelled in
2160 simulated peat profiles by driving Markov chains associated with bulk density distributions by peat type
and depth. The model closely reproduced the expected change in bulk density between vertically adjacent
peat horizons. Markov-derived peat profiles showed somewhat greater variance in organic matter load in the
upper 135 cm compared to observed cores due to the lack of whole-profile bias or trends in density. Themethod
and derived Markov chains shown here have utility in hydrological modelling, regional carbon estimates, and in
the modelling of disturbances such as wildfire.

Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

1. Introduction

Northern peatlands store 500 ± 100 Pg of carbon (Yu, 2012); in
Canada, these peatlands can be 2 m or more in depth, and typically
store over 75 kg C m−2 (Beilman et al., 2008). The vulnerability of the
carbon stored in these northern peat reserves to decomposition or
wildfire combustion is dependent in a large part on key hydrological
feedbacks that maintain a high water table position and high water
content of the near-surface peat (Waddington et al., 2014). For many
of these feedbacks, such as the water table-peat deformation feedback
where the compression of peat during declining water tables imposes
a concomitant decrease in hydraulic conductivity, the density and veg-
etative origin of the peat are key factors in determining the strength of
the feedback (Whittington and Price, 2006). Peat bulk density has also
been shown to influence key hydrological and carbon cycling processes
such as unsaturated water retention (Weiss et al., 1998), specific yield
(Boelter, 1968), smouldering combustion propagation (Benscoter
et al., 2011), peat compression (Price et al., 2005),methane bubble stor-
age (Kettridge and Binley, 2011), and methane bubble ebullition
(Coulthard et al., 2009).

Current models of peatland biophysical processes (e.g. Kettridge
et al., 2012a) are able to utilize detailed information on the vertical pat-
terns of peat attributes such as unsaturatedwater retention or hydraulic
conductivity which are determined in a large part by bulk density.

However, there is currently no reliablemethod of producing such verti-
cal patterns of peat density and other attributes beyond peat cores,
which are limited in number and costly to acquire. Existing methods
of simulating depth-wise peat density for use in models rely on linear
trends (e.g., Bauer et al., 2006) and do not reproduce the often abrupt
changes in peat properties that are the result of changes between previ-
ous ecosystem states (Kuhry, 1994). In organic soil combustion, such
large density contrasts have recently been shown to limit the extent of
smouldering (Benscoter et al., 2011). Moreover, existing datasets on
the spatial patterns of peat bulk density and their associated properties
therein are limited, resulting in an overly simplistic, and potentially
incorrect, representation of peat stratigraphy in land surface models
(e.g. Letts et al., 2000).

Stochastic simulations may provide a useful alternative to simple
linear modelling of peat properties, and have the advantage of allowing
for abrupt or non-linear patterns similar to those observed in the peat
core record. We suggest that the first step towards to the ultimate
simulation of a 3-D peat density structure is the use of the Markov
chains for creating 1-D vertical simulated peat profiles of density and
peat type.Markov chains have beenwidely used as a statistical technique
to develop 1-D vertical profiles in the study of geological stratigraphy
(e.g. Krumbein and Dacey, 1969). In an ecological context, Markov
chains have been used in a variety of areas such as ecological transition
modelling (Baltzer, 2000) andmore recently in simulating the horizon-
tal distribution of soil catenas (Li and Zhang, 2007).

Here we present a Markov chain model to describe vertical transi-
tions in peat properties using a high resolution dataset of peat cores
from a Canadian wetland database (Zoltai et al., 2000). Most existing
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databases for peat cores are coarse in vertical resolution, and often em-
phasize an economic peat resources component (e.g. Riley, 1987). Such
databases often encompass only 3–4 peat samples per core, necessitat-
ing a linear extrapolation between samples that can approach 1 m in
thickness. While high-resolution datasets of peat cores exist for carbon
accumulation studies (e.g. Yu et al., 2003), such studies are focused pri-
marily on carbon dating and thus largely exclude peat type, decomposi-
tion state, or other properties that influence physical processes such as
hydraulic conductivity (Päivänen, 1973). Given the strong relationships
between peat type and density (Päivänen, 1973; Thompson and
Waddington, 2013; Fig. 1; Table 1), as well as the abundance of data
on peat type peat macrofossil studies (Kuhry, 1994), a Markov chain
framework driven by peat type is well-suited for driving simulations
of vertical density and other peat properties.

Through the novel analysis of the Zoltai et al. (2000) data of boreal
peat cores the objectives of this study were to: (1) determine the
depth-wise distribution of peat types and density across differing peat
types; (2) create a series of depth-stratified Markov chains of peat
type for the creation of simulated peat profiles; and (3) to attribute
physical properties (primarily density) to peat profiles simulated
using Markov chains.

2. Methods

2.1. Source data

This model relies entirely on a set of selected data from the database
(Zoltai et al., 2000) that we refer to as the Zoltai dataset. The database
contains 626 vertical peat cores containing 6443 peat samples (sections
of cores). In a majority of cases, only one peat core was taken from each
site, so theMarkov chains presented here are limited to vertical patterns
and do not take into account any horizontal variation. Of the 626 sites in
the database, all bogs and poor fens in the provinces of Manitoba,
Saskatchewan, and Alberta were selected for a total of 143 peat cores.
Of the cores used, 76 came from the Boreal Plain or Taiga Plain ecozones
(Fig. 2), while 56were taken from the Boreal Shield ecozone (Ecological
StratificationWorking Group, 1995). The remaining 11 coreswere taken
from the aspen parkland–Boreal Plain transition at the southern edge of
the Boreal Plain. The subset of the larger database was selected because
the sites share a similar continental climate and are generally forested
and Sphagnum-dominated. The majority of peat samples were sectioned
at 15 cm increments, though a small number of cores featured smaller
or larger sampling intervals. While a large number of chemical parame-
ters such as metal or nutrient concentration were measured for each
peat sample, here we only examine a few key physical parameters: peat
type, bulk density, and von Post's humification (von Post and Granlund,
1926). More detail on the additional parameters measured as well as col-
lection and analysis techniques can be found in Zoltai et al. (2000).

2.2. Markov chains

A total of 72 cores within the Zoltai dataset (one half of the dataset)
were randomly selected for the construction of Markov chains, while
the remaining 50% was set aside as a control group. For each 15 cm
depth interval, the change in peat type at the between-sample interface
occurring in that depth interval was logged, and the count of each peat
type transition (e.g. sedge to Sphagnum) was summed and divided by
the total number of sample interfaces at that depth interval to calculate
a probability of transition between the two peat types within a specific
depth interval. Taken together, an empirically-derived Markov chain of
peat type transition per depth interval was produced. Only Markov
chains from the upper 135 cm (9 depth intervals) were constructed,
as it limits samples to those distant to the basal peat where high inor-
ganic content can modify physical properties.

Organic bulk density (subtracting the density due to inorganic
content) was calculated using the equation:

ρo ¼ ρb 1− f ashð Þ ð1Þ

where ρo is the organic bulk density (g cm−3), ρb is the bulk density
(g cm−3), and fash is the ash proportion by weight (-). For each combi-
nation of peat type and depth with greater than 10 observations (37
combinations in total), the observed distribution of sample organic den-
sity found therein was fit to the Johnson distribution (Johnson, 1949) in
the R programming language (R Core Team, 2012) using the SuppDists
package (Wheeler, 2009) which is an implementation of fitting the
Johnson distribution by quantile estimators (Wheeler, 1980). The John-
son distribution was fit to one of the three variants: (i) log normal;
(ii) bounded; or (iii) unbounded; alternatively, a normal distribution
was used where the fit exceeded that of any of the Johnson distribution
variants. The three forms of the Johnson distribution are given by Hill
et al. (1976) as:

(i) log normal: z = γ + δ ln(x − ξ); ξ b x
(ii) unbounded: z ¼ γ þ δ sinh −1ð Þ x−ξ

λ
(iii) bounded: z ¼ γ þ δ ln x−ξ

ξþλ−x

� �
; ξbxbδ

where z is a standardized normal variable and δ, γ, λ, and ξ are the four
fitted parameters. The advantage of using the Johnson distribution is the
ability to fit a range of distribution forms from normal to right-skewed
and log-normal distributions within a single distribution under four
unified parameters and a single computational step. For each combina-
tion of type and depth with insufficient sample size for a fit to the
Johnson distribution (a total of 24 combinations), only a median was
calculated. Despite being 40% of the total possible combinations of peat
type and depth, these combinations only represent 7% of the entire
population of samples in the portion of the Zoltai dataset used formodel
construction.

The Markov chain was initiated at the lowermost horizon (depth
120–135 cm) using a randomly selected peat type weighted according
to the observed distribution of peat type at the 120–135 cmdepth inter-
val. The subsequent peat type for the layer abovewas selected following
the probabilistic transitionmatrix (i.e. Markov chain; Table 2). For tran-
sitions into a different peat type the bulk density was independently
sampled from the corresponding Johnson distribution for the peat
type at the depth interval, or median bulk density if a sample size less
than 10was present. Changes in bulk density between adjacent samples
of the samepeat typewasmodelled not as an independent realization of

Fig. 1.Organic bulk density across all depths as a function of peat type. Letters above boxes
indicated statistically significant differences in groupmean via Tukey's Honest Significant
Difference test.

Table 1
Analysis of variance of peat organic bulk density from Zoltai et al. (2000) as a function of
peat type and depth interval.

DF F p

Peat type 6 152.1 b0.001
Depth interval 8 51.1 b0.001
Type:depth 41 2.33 b0.001
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