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Disaggregation of conventional soil surveys has been identified as a potential source for much of the next gener-
ation of model-ready digital soil spatial data. This process aims to apportion vector soil surveys into raster
(gridded) representations of the component soils that are often aggregated together in map unit designs. Most
soil surveys are published with some description of the soil–landscape relationships that distinguish component
soils within map units. We used these descriptions found in the Soil Survey Geographic (SSURGO) database of
Webster and Pocahontas Counties in West Virginia, USA, to build a set of representative training areas for all
soil components by using 1-arc second digital elevation data and derived geomorphic indices. These training
areas were then used in classification tree ensembles with a more extensive environmental database to trans-
form the original SSURGO map into a gridded soil series map. We created underlying prediction frequency
surfaces from the models that can be used for creating continuous representations of soil class and property
distributions.
Disaggregationmodels matched training sets in 71%–74% of pixels andmatched components in original SSURGO
map units in 56%–65% of the study area. We evaluated both the original SSURGO data and our models using 87
independent pedons not used in model building. Validation pedons matched components in SSURGO map
units at 39% of sites, but in map units that only included one named component (as opposed to multiple soils
that could be matched to validation pedons) only 27% of the sites matched. Disaggregation predictions matched
validation pedon classes 22–24% of the time using nearest neighbor spatial matches, and these rates increased to
39–44% for correct predictions within a 60-meter radius of the pedon. To characterize uncertainty, we compared
relative ensemble prediction frequency (probability) of final hardened model classes at validation sites. Sites
with correct predictions had generally higher prediction frequencies; which lead us to use them to create an un-
certainty model. Uncertainty was calculated by determining the rate of correct predictions at validation sites
within different intervals of prediction frequencies using nearest neighbor validation results.Wewere able to dis-
cern four uncertainty classes with values of 7%, 18%, 20% and 43%, which we called “ground truth probabilities”.
We present the methods to create these models as a specific example of how disaggregation techniques may be
used to aid in updating national soil survey inventories.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Soil properties and soil functions influence many of the problems
facing society today. Soil is a primary storage mechanism for carbon
and nutrients that control how vegetation grows and how our climate
is changing. However, our knowledge of soils is imprecise, with esti-
mates of global soil carbon stocks in the top meter of soil that range
from 1400 to 3250 petagrams (Grunwald et al., 2011). In light of the
projected challenges of global warming and maintaining natural re-
source services such as crops and cleanwater (IPCC, 2007), high quality

soil information is key to making sustainable decisions. Although many
soil inventories have been carried out around the world, the scope and
spatial structure of these have been criticized for having, among other
things, relatively coarse resolution and map legends that are difficult
to interpret (Burrough, 1989; Burrough et al., 1997; Grunwald, 2009;
Grunwald et al., 2011; McBratney et al., 2003). These issues are exacer-
bated as more andmore researchers use soil data in environmental, ag-
ricultural, hydrological, and engineering models. Many studies have
attempted to improve on past soil inventories using digital soil mapping
and relatedmethods (Bui andMoran, 2001; Bui et al., 1999, 2006, 2009;
Cook et al., 1996; de Bruin et al., 1999; Hansen et al., 2009; Häring et al.,
2012; Kempen et al., 2009; Kerry et al., 2012; Moran and Bui, 2002;
Nauman et al., 2012; Thompson et al., 2010; Yang et al., 2011; Zhu,
1997; Zhu et al., 1997, 2001). The GlobalSoilMap project (www.
globalsoilmap.net) is a recent effort to help produce standard functional
soil property maps for the whole world that can be used in more
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modern contexts (Hartemink et al., 2010; Sanchez et al., 2009). The
GlobalSoilMap consortium has recognized that methods to best utilize
old maps for production of new digital models is one of the best ways
to begin creating new and more detailed soil maps (Minasny and
McBratney, 2010).

One of the main challenges to providing appropriate data is that the
classic paradigm of soil survey is management based, and properties at-
tributed to soils are most often estimates based on sparse data at
representative locations, not quantifications based on statistics. A large
part of the goals of the original design of these maps was to determine
suitability or hazards to human activities. These interpretations provide
pragmatic initial guidance to developers, farmers, and other land
management institutions for issues like road building, septic tank
evaluations, and many other uses (Soil Survey Division Staff, 1993).
The soil survey was supposed to be a starting point in planning and
general management, but more current users have stretched far
beyond these original concepts (Bouma, 1989; Soil Survey Division
Staff, 1993).

Many studies have used soil survey spatial data with property esti-
mates as inputs into models (e.g., Bandaragoda et al., 2004; Causarano
et al., 2008; Gatzke et al., 2011; Lineback Gritzner et al., 2001; Wilson
et al., 1993; Zhang et al., 2011). In the U.S., both the U.S. General Soil
Map (STATSGO2: 1:250,000 scale) and the Soil Survey Geographic
(SSURGO: most commonly 1:24,000 scale, but varies between
1:12,000 and 1:125,000) databases often aggregatemultiple soil classes
into spatial polygon delineations used in maps (Soil Survey Division
Staff, 1993; Thompson et al., 2012). The data model for SSURGO,
which is the primary high resolution soil inventory for the US, includes
polygonal map units with generally one to four named soil series (soil
taxonomic class) per map unit, plus minor inclusions of soils or non-
soil areas, which are sometimes but not always fully documented. This
aggregation, and the inherently crisp breaks that polygon mapping im-
poses on spatial data, make spatial representation of estimated soil
properties (e.g., soil texture, organic matter, and pH) somewhat convo-
luted and predisposed to artifacts. For example, there are often distinct
changes in property values between polygons or at survey project
boundaries that do not make logical sense (Loerch, 2012; Thompson
et al., 2012). The problem that now emerges is how to use the wealth
of information in legacy soil surveys in an appropriate way. Part of the
answer might be to restructure the data to more appropriately address
current applications, and one basic step to doing that is to spatially dis-
aggregate the information into its component parts in a manner that
better represents how soils truly occur in the field. This paper illustrates
a technique to use widely available elevation, lithology, and remote
sensing data to disaggregate two existing adjacent soil surveys in
West Virginia, USA, into one continuous soil series class map using no
new soil field data. This process potentially revealsmuchmore informa-
tion about spatial soil distribution and spatially harmonizes somewhat
disjoint mapping projects that have artifacts along their boundaries
(Nauman et al., 2012; Thompson et al., 2010, 2012).

1.1. Soil survey spatial disaggregation

The primary focus of soil survey disaggregation is to express the spa-
tial distribution of soil individuals in cases where older soil maps have
lumped them into one spatial unit (Table 1). Another way to describe
it would be the enhancement of a prior generalized soil map to produce
a more detailed map that spatially distinguishes soil properties or types
at a greater level of detail. Generally these techniques also tend to trans-
late the data from object-based polygon maps to grid-based raster for-
mats by using new point or environmental maps (e.g. DEM or satellite
imagery) as predictors to map within polygons. Disaggregation has
been identified as a conceptual approach to translate current data into
formats compatible with modern needs and with pedologic concepts
of soil formation (Bui, 2004; Bui and Moran, 2001; Bui et al., 1999; de
Bruin et al., 1999;McBratney, 1998;Wielemaker et al., 2001). Generally,

approaches use new pedon data and/or environmental covariate data
to determine how soils within polygon map units vary spatially.
Approaches tend to draw from digital soil mapping frameworks
(Grunwald, 2009; Grunwald et al., 2011; McBratney et al., 2003; Scull
et al., 2003) that employ a state-factor theory of soil formation summa-
rized by Jenny (1941).

Spatial disaggregation of multi-component soil map polygons into
individual component soil classes has been demonstrated in attempts
to universally update soil maps (Bui and Moran, 2001; Hansen et al.,
2009; Smith et al., 2012; Wei et al., 2010), and to create class distinc-
tions within the bounds of original survey map units (e.g. Bui and
Moran, 2001; Häring et al., 2012; Thompson et al., 2010). Other studies
have looked at disaggregating polygons for specific soil properties using
conventional soil survey. Goovaerts (2011) evaluated geostatistical
methods that can combine point data with choropleth data to look at
within-polygon variation in a specific variable, and Kerry et al. (2012)
applied parts of thesemethods to soil organic carbonmapping in north-
ern Ireland. Fuzzy logic has been used in disaggregation through appli-
cations like SoLIM (Qi et al., 2006; Zhu, 1997; Zhu et al., 1996, 2010) to
help organize and implement soil–landscape relationships for mapping
soils. SoLIM has been used in coordination with both expert knowledge
(Smith et al., 2010) and statistical approaches (Yang et al., 2011) to im-
plement discovered soil–landscape relationships used in updating and
disaggregating soil maps. Other fuzzy knowledge systems have lever-
aged landform element classifications to better disaggregate landscapes
into units with similar soils (MacMillan et al., 2000), and combined
landform element maps with other ecological and environmental co-
variate maps to create ecosystem maps that incorporate soil informa-
tion (MacMillan et al., 2007). Classification and regression trees have
been a prominent technique used in disaggregation. Bui and Moran
(2001) and Wei et al. (2010) both used ensembles of decision trees
and Häring et al. (2012) used random forests to refine soil and surficial
geology classes. Tree-based models have also been used extensively in
general digital soil mapping applications and seem to have the greatest
flexibility of common modeling methods (Behrens et al., 2010a,b;
Moran and Bui, 2002; Bui et al., 2009; Lemercier et al., 2011;
McKenzie and Ryan, 1999; Saunders and Boettinger, 2007; Schmidt
et al., 2008; Scull et al., 2005).

The objective of this researchwas to identify a pragmatic and repeat-
able method for systematic disaggregation of legacy soil maps. This
technique addresses the common situation where an older soil map is
available, but more detailed soil spatial data is needed, and too few
new soil observations are available to use in geostatistical approaches
or for building empirical models. We utilize soil–landscape rules that
are usually present in soil survey database map unit descriptions in
combination with a classification tree ensemble with different random-
ization schemes to universally disaggregate two adjacent soil survey
projects into one harmonized soil series map. This approach captures
both implicit and explicit expert knowledge about soil–landscape rela-
tionships in SSURGO and pairs that with available elevation, imagery,
and geology data in a classification tree ensemble model. We selected
methods and data sources based on repeatability, transparency, and

Table 1
Two multi-component map units recorded in the Webster County soil survey, West
Virginia (Delp, 1998).

Map unit (MU) name MU kind Components Parent
material

% of MU

Gilpin–Laidig association,
very steep, extremely stony

Association Gilpin Residuum 45
Laidig Colluvium 35
Included soils n/a 20

Pineville–Gilpin–Guyandotte
association, very steep,
extremely stony

Association Pineville Colluvium 35
Gilpin Residuum 25
Guyandotte Colluvium 15
Included soils n/a 25
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