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In this paper we develop a model for the spatial variability of apparent electrical conductivity, ECa, of soil formed
in relict patterned ground. The model is based on the continuous local trend (CLT) random processes introduced
by Lark (2012b) (Geoderma, 189–190, 661–670). Thesemodels are non-Gaussian and so their parameters cannot
be estimated just by fitting a variogram model. We show how a plausible CLT model, and parameters for this
model, can be found by the structured use of soil knowledge about the pedogenic processes in the particular en-
vironment and the physical properties of the soil material, along with some limited descriptive statistics on the
target variable. This approach is attractive to soil scientists in that it makes the geostatistical analysis of soil
properties an explicitly pedological procedure, and not simply a numerical exercise. We use this approach to
develop a CLT model for ECa at our target site. We then develop a test statistic which measures the extent to
which soils on this site with small values of ECa, which are coarser and so more permeable, tend to be spatially
connected in the landscape. When we apply this statistic to our data we get results which indicate that the CLT
model is more appropriate for the variable than is a Gaussian model, even after the transformation of the data.
The CLT model could be used to generate training images of soil processes to be used for computing conditional
distributions of variables at unsampled sites by multiple point geostatistical algorithms.

© 2013 Natural Environment Research Council. Published by Elsevier B.V. All rights reserved.

1. Introduction

‘Mais surtout nous insisterons sur la nécessité d'incorporer au
maximum la physique du problème et le contexte géologique de la
zone étudiée’.

[Chilès and Guillen (1984)]

In most geostatistical analyses of soil the data are assumed to be a
realization of a multi-Gaussian random function, perhaps after they
have been transformed so that their histogram represents a Gaussian
distribution. Furthermore, the random function commonly has a spatial
covariance function drawn from a limited subset of models (Webster
and Oliver, 2007), which are used because of their convenient
mathematical properties. In some of the earth sciences there has been
progress in the development of random functions with parameters
that are determined, or at least constrained, by parameters of underlying
processes which have a physical meaning (e.g. Chilès and Guillen, 1984;
Kolvos et al., 2004). This has advantages (Lark, 2012a); for example, the
efficiency of spatial sampling to model the spatial covariance function
could be improved if prior distributions for covariance parameters

could be specified from process knowledge. However, this has not
been achieved in soil science. Lark (2012a) suggested that this is probably
because the variables that soil scientists study are commonly influenced
by a more complex set of factors at more diverse spatial scales than is
the case for the variables where it has proved possible to specify the
covariance function from process information. For example, the
covariance function for diffusion processes is well-established
(Whittle, 1954, 1962), and diffusion is a source of spatial variation
in the concentration of nutrients in soil, but it is just one of many
sources of spatial variation, and is of limited importance at the spatial
scales most generally studied for practical purposes.

Lark (2012a, 2012b) suggested that progress might be made by
recognizing a number of distinct modes of soil variation, simple and
generalizable rules that capture how the effects of factors of soil
variation vary laterally, andwhichmap naturally on to particular spatial
random functions. For example, in conditions where soil variation is
strongly determined by differences between discrete domains in the
landscape (such as geological units, topographic units, fields etc.) then
a subdivision of space into random sets such as Poisson Voronoi
polygons may be appropriate (Lark, 2009) and properties of the spatial
model (such as the mean chord length of the polygons) may be given a
physical meaning.

Lark (2012b) proposed a mode of soil variation: continuous local
trends. Under this mode of variation soil varies laterally in space,
changing continuously rather than in a step-wise fashion; and these
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trends are local and repeating, so that they are essentially unpredictable
(in contrast to a large-scale trend in a variable that might be observed
across a study area). Examples of continuous local trends would be
concentration gradients around the rhizosphere, or around individual
plants, and catenary variation at landscape scale. Lark (2012b)
proposed a general family of random functions to describe continuous
local trends (CLT random functions). The value of a CLT variable at
some location is given by a distance function, whose argument is the
distance from the location of interest to the nearest event in a realiza-
tion of a spatial point process. This makes the CLT a random function.
The CLT variables considered by Lark (2012b), and in this paper, are
Poisson CLT (PCLT) variables because the spatial point process is
completely spatially random. Lark (2012b) estimated parameters of a
PCLT process from data on a soil variable. It was also pointed out that
the PCLT process might differ from a comparable Gaussian random
function with respect to its multiple point statistics (Strebelle, 2002).
This raises the possibility that PCLT models, as well as mapping closely
on to a particular mode of soil variation, might be practically useful for
applications where spatial connectivity plays a major role controlling
processes in soil and so the multiple point statistics of the variable are
important.

In this paper we use a PCLT random function to model the variation
of apparent electrical conductivity, ECa, of soil at a site where this
variable is strongly influenced by spatial patterns in the parent
material. These patterns arose from the development of ice wedges
in Eocene clay under permafrost conditions, and subsequent infilling
by coarser material which leads to strong textural contrasts in the
soil. The objective is to show how soil knowledge: general knowledge
about soil formation in the particular environment and its relationship
to ECa, and some simple descriptive statistics of the data (summary
statistics and empirical variograms), allow us to select and fit a
PCLT model. We then compare the PCLT model with a trans-Gaussian
(TG) model of the data, i.e. a model fitted by conventional geostatistical
analysis after thedata have been transformed to approximate normality.
Specifically we compare the models with respect to a statistic that
summarizes the spatial connectivity of the coarser material, which
might be relevant to simulations of transport processes in the soil.
We then evaluate which model appears best to represent the spatial
pattern in the data.

2. Case study

2.1. The study area and data collection

We surveyed an area of Pleistocene patterned ground in the sandy
silt region of Belgium. The patterned groundwas identified by polygonal
crop marks on an aerial photograph and interpreted to be the result of
ice wedge formation during the last glacial period. The study area and
data collection were discussed in detail by Meerschman et al. (2011),
therefore we limit ourselves here to a brief presentation of it. More
general information on ice-wedge polygons constitutes part of the
soil-knowledge base that we use in this study, and is presented in
Section 2.3.2. below as it is required.

The study area (0.6 ha)was located in an agriculturalfield in Deinze,
Belgium (central coordinates: 51°01′16″N, 3°29′41″E). Excavation of a
small part of the study area (6 × 6-m) to a depth of 0.9 m uncovered
an ice-wedge pseudomorph with a diameter of about 6 m. The wedges
were formed in clay-rich Tertiary marine sediments that were covered
with a 0.6 m layer of silty-sand Quaternary deposits. Texture analysis
on 94 subsoil samples (0.6–0.8 m) showed a clear contrast between
the Eocene host material (on average 21% clay) and the superficial
material (on average 6% clay).

Previous studies (Cockx et al., 2006; Saey et al., 2009) have shown
that ECa is a useful covariate to study textural variability at profile and
polygon-scale in soils formed in these conditions. The study area was
surveyed with a mobile proximal soil sensor measuring the ECa

(mS m−1) of an underlying soil volume down to approximately
1.5 m. The sensor was mounted on a sled pulled by an all terrain
vehicle. The vehicle drove along parallel lines with an in-between
distance of on average 0.75 m. The within-line distance between
sensor response registrations was 0.15 m.

2.2. Initial data analysis

Meerschman et al. (2011) noted that the ECa measurements clearly
reflected the polygonal patterns: small ECa values indicated the former
ice wedges filled with lighter material. In addition to the short-range
variation in ECa, there were large values of ECa near an old field track
in the north-east of the surveyed region. To avoid any assumptions
about the form of this trend we decided to restrict our analyses to the
lower left quadrant of the surveyed area, a region of approximately
40 × 40-m, with 17792 observations, which excludes this area
with elevated ECa. Fig. 1 shows a post-plot of these data.

Fig. 2 shows the histogram of the data. Summary statistics are
presented in Table 1. Note that the data are mildly skewed. In the
analyses reported below the PCLT model was fitted in all cases to
the raw data, and all analyses with the TG model were done with
the data after a transformation which is described in Section 2.3.1
below.

2.3. Spatial analysis

In this sectionwedescribe the analysis of the ECa data tofit a TGmodel
and a PCLT model. The first task (Section 2.3.1) was straightforward after
a data transformation, which is described. In Section 2.3.2 we describe
how soil knowledge was used to fit the PCLT model.

2.3.1. Trans-Gaussian model
Theobjective of the case study is to compare a continuous local trend

(PCLT)model of the data with a trans-Gaussian (TG)model, as might be
used in standard geostatistical analysis. Although the data are only
mildly skew, since the objective of this exercise is to compare aGaussian
or Trans-Gaussian model with a stochastic geometric alternative, it was
decided to transform the data so that the histogram and summary
statistics were as close as possible to those expected for data drawn
from a Gaussian random variable. We therefore used a Box-Cox
transformation of the data to normality for the TG modelling:

y ¼ zζ−1
ζ

ζ ≠ 0;

¼ loge zð Þ ζ ¼ 0;
ð1Þ

where z is a value on the original scale and y is a transformed value.
We used the BOXCOX procedure from the MASS package (Venables and
Ripley, 2002) for the R platform (R Development Core Team, 2012) to
find the likelihood profile of the ζ parameter, and selected the value
with maximum likelihood. The data were then transformed with the
maximum likelihood estimate of ζ, substituted into Eq. (1) and then
standardized to zero mean and unit variance. The estimate of ζ and
summary statistics for the data after transformation, and standardization,
are presented in Table 2.

An isotropic empirical variogram of the transformed and standard-
ized data was then computed using the method of moments estimator
due to Matheron (1962) as implemented in the FVARIOGRAM directive in
GenStat (Payne, 2010). An authorized model was then fitted to the
estimated variogram by weighted least squares (Cressie, 1985) using
the MVARIOGRAM procedure in GenStat (Harding et al., 2010). Alternative
models were considered and the stable or powered exponential
model was selected on the basis of the Akaike information criterion
(McBratney and Webster, 1986). This variogram model takes the form

γ rð Þ ¼ c0 þ c1 1−expð− r=af gκ� �
; ð2Þ
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