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It is important to understand how and where pollution and other anthropogenic processes compromise the
ability of urban soil to serve as a component of the natural infrastructure. An extensive survey of the topsoil of
theGreater LondonArea (GLA) in theUnitedKingdomhas recently been completed by a non-probability system-
atic sampling scheme.We studieddata on lead content from this survey.Weexamined anoverall hypothesis that
land use, as recorded at the time of sampling, is an important source of the variation of soil lead content, and we
examined specific orthogonal contrasts to test particular hypotheses about land use effects. The assumption that
the residuals from land use effects are independent random variables cannot be sustained because of the
non-probability sampling. For this reasonmodel-based analyseswere used to test the hypotheses. One particular
contrast, between the lead content in the soil of domestic gardens and that in the soil under parkland or recre-
ational land, was modelled as a spatially dependent random variable, predicted optimally by cokriging.
We found that land use is an important source of variation in lead content of topsoil. Industrial sites had the
largest mean lead content, followed by domestic gardens. Detailed contrasts between land uses are reported.
For example, the lead content in soil of parkland did not differ significantly from that of recreational land, but
the soil in these two land uses, considered together, had significantly less lead than did the soil of domestic
gardens. Local cokriging predictions of this contrast varied substantially, and were larger in outer parts of the
GLA, particularly in the south west.

© 2013 The Authors. Published by Elsevier B.V.

1. Introduction

Traditionally soil survey and inventory has been focussed in the
rural environment, to provide information for agricultural extension,
catchment management, etc. In the last 25 years or so there has been
increasing interest in the soil of urban environments (Bullock and
Gregory, 1991). It is recognized that these soils are influenced by
human activity to a unique extent (Craul, 1985) and that urban soil
quality canhave a direct influence onhumanhealth. In particular humans
are exposed to contaminants present in the soil both through inhalation
and ingestion (Mielke et al, 2007), and thismayhavedirect consequences
for health and wellbeing (Miranda et al., 2007).

This growing awareness of the importance of urban soils has
resulted in increasing activity to survey them. Johnson et al (2011)
provide accounts of geochemical surveys of urban soils in several
European cities, and urban sites have been introduced into the network
of long-term ecological research sites in the United States (Bain et al.,
2012). In 1992 the British Geological Survey (BGS) extended its geo-
chemical baseline survey of the environment, which includes soil sam-
pling, to include urban soils (Fordyce et al., 2005). Since then more

than 20major urban centres in the UK have been surveyed. The resulting
data have been used to study the spatial distribution of potentially haz-
ardous elements in soil, notably metals (e.g. Marchant et al., 2011;
Rawlins et al., 2005).

Lead in urban soil is of considerable interest. It is strongly influenced
by human activity, and diffuse lead pollution of the soil arises from in-
dustrial use of lead and from the past use of lead tetraethyl as an addi-
tive in petrol. In the past lead pipingwas extensively used for plumbing
and lead was a major constituent of paints. All these anthropogenic
sources of lead are particularly dense in the urban environment, and
so lead is commonly elevated both in urban soils (Clark et al, 2006)
and in periurban soils (Rawlins et al, 2012). Furthermore, lead is persis-
tent in soils and sediments because it is strongly bound by various soil
minerals (Maurice, 2009), so historical land usemay have a pronounced
‘signature’ in the contemporary content of soil lead. This lead is a threat
to human health. The resuspension of soil lead is an important source of
atmospheric lead, which may be inhaled and so absorbed (Laidlaw and
Filippelli, 2008). The ingestion of soil is another important pathway by
which soil lead can be absorbed, particularly by children (Guney et al.,
2010). Another pathway for the uptake of lead is possible if some
urban soils, such as domestic gardens, are used to grow vegetables for
human consumption (Davies et al, 1979).

It is therefore important to understand the origins and distribu-
tion of lead, as well as other metals, in the urban soil. In the present
paper we use data from a recent extensive survey of the topsoil across
the whole of London to examine specific orthogonal hypotheses about
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how land use, recorded at the time of sampling, accounts for variations
in total soil lead content. This requires a model-based analysis because
the survey, like many others carried out to provide geochemical base-
line data, was not conducted by probability sampling. Such an analysis
provides estimates of mean effects (such as the difference in lead
content between two particular land uses) but these effects may vary
spatially in ways that give insight into the nature of the land use effect.
We therefore examine how a particular land use effect on soil lead con-
tent varies spatially across the Greater London Area using an optimal
cokriging estimator.

2. Materials and Methods

2.1. The London Earth survey

From 2005 to 2009 BGS undertook soil sampling in the Greater
London Authority (GLA) area which comprises the City of London and
the London Boroughs (Knights and Scheib, 2010). Details of the survey
methodology are provided by Johnson (2005) but we summarize the
key points here.

Sampling was undertaken according to a non-probability system-
atic design. Each 1 × 1-km square of the British National Grid within
the GLA area was sampled, with a sample site in each of the four
500 × 500-m quadrants. The sample site was placed as close as pos-
sible to the centre of the quadrant avoiding any obvious sources of
point contamination such as spoil heaps. The surveying team identi-
fied the land use from a series of land use codes (see Table 1) at each
sample site. At each site a soil specimen was collected with an auger
at the centre and vertices of a 20 × 20-m square centred on the site.
The soil specimen was collected with an auger from depth 0 to 15 cm
after removal of any surface litter. The five specimens were then aggre-
gated to form a single bulk specimen for the site. At one sample site in
every 100 a duplicate aggregate specimen was formed from cores col-
lected at the centre and vertices of an adjacent 20 × 20-m square.

The aggregated material from each site was subsequently air-dried,
disaggregated and sieved through a nylon sieve to pass 2 mm and
sub-sampled by coning and quartering. A 50-g sub-sample was ground
in an agate planetary ball mill until 95% of the material was finer than
53 μm. Concentrations (totals) of 50major and trace elementswere de-
termined for each sample by wavelength dispersive X-ray fluorescence
(XRF) spectrometry. Data were obtained for a total of 6245 sites.

2.2. Exploratory data analysis

Summary statistics were computed for the data on lead content
and a transformation to logarithms was considered. The residuals of
lead content from land use class mean were also examined, both with
andwithout transformation of the original data. In general if the conven-
tional coefficient of skewness is out with the range [−1.0, 1.0] then a

transformation is deemed necessary (Webster and Oliver, 2007). How-
ever, the conventional coefficient of skewness is very susceptible to out-
lying values, and decisions on transformation should be based on the
shape of the distribution of the underlying variable, separate from the ef-
fects of any outlying values. For this reason we used the octile skewness,
which is a robust measure of the asymmetry of the distribution of a var-
iable, insensitive to outliers (Brys et al., 2003). An equivalent rule of
thumb to that ofWebster andOliver (2007) for interpretation of the con-
ventional skewness coefficient is to consider transformations of a vari-
able if the octile skewness is not in the range [−0.2, 0.2] (Lark et al.,
2006). By basing decisions on transformation on the octile skewness
we aim to use transformations only when this is necessary to justify
the assumption that the data are drawn from an underlying normal ran-
dom variable, possibly with outliers present. Note that, because some of
the recorded lead concentrations were zero it was necessary to add a
small constant (0.1) to the data before the transformation.

2.3. Overall land use effects

2.3.1. The model, estimation and inference
Table 1 shows the land use classes that were considered in this study.

The objective was to examine the evidence for overall differences be-
tween the classeswith respect to lead content, and to considermore spe-
cific questions about contrasts between particular land uses or groups of
land uses.

One method to address such a question is the analysis of variance,
with the partition of the sum-of-squares for differences between p
land use classes into components that correspond to particular con-
trasts. That method cannot be used in this case because the analysis
of variance is based on the assumption that the residuals from land
use class means can be regarded as independent random variables.
That assumption is justified by the use of an appropriate probability
sampling design, such as simple random sampling or stratified random
sampling (de Gruijter et al., 2006). Such an assumption cannot bemade
with these data because the sample sites are selected according to a
systematic rule with no element of randomization. For this reason a
model-based analysis is necessary.We regard the n × 1 vector of obser-
vations z as a realization of a random function, Z which is described by
the linear mixed model

Z ¼ MTβþ ηþ ε; ð1Þ

where M is a n × p vector that indicates the land use class present at
each location so that the element in the ith column and jth row is 1.0
if the ith class occurs at the jth sample location, and is zero otherwise.
The p × 1 vector β contains the fixed effects coefficients which here
are mean values of the variable of interest within each land class. The
terms η and ε are, respectively, a spatially correlated and an indepen-
dently and identically distributed random variable. Ideally the compo-
nents of a linear mixed model are estimated by finding the residual
maximum likelihood (REML) estimates of the variance parameters of
the random variables, and then generalized least squares estimates of
the fixed effects coefficients (e.g. Lark and Cullis, 2004). However, this
is not practical with substantial data sets such as this one, with n =
6245, since the REML estimation requires repeated inversion of a
n × nmatrix, which is computationally demanding. Itwas therefore de-
cided to estimate the parameters of the random components from ordi-
nary least squares (OLS) residuals from the class means. REML is
generally preferred because estimates based on OLS residuals are
prone to bias because of estimation error of the class means. However,
in a large data set this estimation error, and so the resulting bias, will
be small.

For this reason we used an iterative generalized least squares pro-
cedure to fit the model (Webster and Oliver, 2007). The procedure is
outlined below.

Table 1
Land use classes and numbers of observations in each.

Class Number of observations

Arable 270
Commercial and residential 195
Domestic garden 1554
Industrial 64
Other 197
Park 828
Pasture 144
Recreational 657
Road verge 597
Rough grazing 346
Urban open space 1119
Woodland or forest 274
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