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This paper presents amethodology for assessingmineral abundances ofmixtures havingmore than two constit-
uents using absorption features in the 2.1–2.4 μmwavelength region. In the first step, the absorption behaviour
of mineral mixtures is parameterised by exponential Gaussian optimisation. Next, mineral abundances are pre-
dicted by regression tree analysis using these parameters as inputs. The approach is demonstrated on a range of
prepared samples with known abundances of kaolinite, dioctahedral mica, smectite, calcite and quartz and on a
set of field samples from Morocco. The latter contained varying quantities of other minerals, some of which did
not have diagnostic absorption features in the 2.1–2.4 μm region. Cross validation showed that the prepared
samples of kaolinite, dioctahedral mica, smectite and calcite were predicted with a root mean square error
(RMSE) less than 9 wt.%. For the field samples, the RMSE was less than 8 wt.% for calcite, dioctahedral mica
and kaolinite abundances. Smectite could not be well predicted, which was attributed to spectral variation of
the cations within the dioctahedral layered smectites. Substitution of part of the quartz by chlorite at the predic-
tion phase hardly affected the accuracy of the predictedmineral content; this suggests that the method is robust
in handling the omission of minerals during the training phase. The degree of expression of absorption compo-
nents was different between the field sample and the laboratory mixtures. This demonstrates that the method
should be calibrated and trained on local samples. Our method allows the simultaneous quantification of more
than twominerals within a complexmixture and thereby enhances the perspectives of spectral analysis formin-
eral abundances.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Soil mineralogy is an important indicator for soil formation and par-
entmaterial characterisation. Among otherminerals in soils like quartz,
feldspars and carbonate minerals, clayminerals are themain secondary
phases formed by theweathering of the parentmaterial. The abundance
of different clayminerals and their structural features becomeuseful in-
dicators in defining the evolutional stage of a soil (Egli et al., 2008; Hong
et al., 2007; Mavris et al., 2011; Sedov et al., 2003). In environmental
and geological studies, the characterisation (and quantification) of soil
mineralogy is typically achieved using X-ray diffraction (XRD). XRD is
broadly acknowledged as the essential tool for mineral determination
of mono- or multi-mineral mixtures (Bish and Plötze, 2011; Gomez et
al., 2008;Mulder et al., 2011; Omotoso et al., 2006). The basic limitation
of XRD is that the analysis must be carried out indoors, basically due to

sample preparation requirements and specific laboratory treatments
necessary for some clay minerals, such as glycolation and heating after
various cation saturations. Visible Near Infrared and Shortwave Infrared
(VNIR/SWIR) spectroscopy has proven to be an efficient method for the
determination of various soil properties since measurements can be
done with little effort and in situ (Ben-Dor et al., 2009; Viscarra Rossel
et al., 2006). In this paper, we propose and demonstrate its use for
simultaneous quantification of mineral abundances from complex
mixtures.

Someminerals such as quartz, and low iron feldspars do not showab-
sorption features in the 0.350–2.500 μmwavelength range except for the
features arising fromFe2+/3+ related to theirweathering products (Clark
et al., 1990). Detection of minerals having absorption features within the
0.350–2.500 μm range have been successfully obtained using linear
spectral unmixing techniques (Dennison and Roberts, 2003). However,
these analyses were limited to estimating the main component within
a sample having the most distinct absorption feature (Mulder et al.,
2012b). Linear mixing behaviour of spectra, however, is highly unlikely
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in soils because the mineral constituents are typically in intimate associ-
ation with one another. Influencing factors are e.g. the opaqueness of
minerals and coating by other minerals. Furthermore, simultaneous re-
trieval of multiple mineral abundances from reflectance spectra in the
0.350–2.500 μm region is affected by the co-occurrence of absorption
features at similarwavelengths arising fromovertones and combinations
of the fundamental absorptions of OH, H2O and CO3 which occur at
wavelengths greater than 2.500 μm, nonlinear mixing (or scattering)
phenomena (Singer, 1981; Sunshine et al., 1990), and measurement
noise (Stenberg et al., 2010). Hence, reflectance spectra of mixtures are
typically a complex result from the combinations of the spectral charac-
teristics of the constituents (Clark et al., 1990), as illustrated in Fig. 1. A
comparison of the diagnostic features of pure calcite with the continuum
removed reflectance (Clark, 1998) of samples containing an spectrally
dominant mineral shows that e.g. in the presence of quartz the double
absorption feature near 2.300–2.350 μmis present butmuch less distinct
while it is absent in mineral mixtures of calcite with kaolinite or
dioctahedral mica at approximately 15% abundance. Note also that the
absorption near 2.150 μm is absent in the smectite and dioctahedral
mica mixtures while it changes the typical absorption of kaolinite.
Depending on the composition, the abundance and the spatial arrange-
ment of the minerals, the total reflectance resulting from the scattering
of the minerals within the intimate mixture produces positional shifts,
changes in intensity, disappearance of absorption features or changes
in their shape.

Methods aiming to match diagnostic absorption features with spec-
tra from a large spectral library include the Tetracorder (Clark et al.,
2003) and the CRISM Analysis Tool (CAT) (Flahaut et al., 2012). While
the extended library enables application to unknown areas without
the need of calibration on local samples, the retrieval of the mineral
composition of complex mixtures remains limited because spectral
mixing effects may yield diagnostic features not distinct enough to be
matched to minerals in the spectral library. Theoretically the spectra
could be matched to the corresponding spectra with known abun-
dances in the library. However the spectra to be included in the library
of various minerals and the possible variation in mixtures of these
would follow combinatory logic (Mulder et al., 2012b). So, the methods
are commonly applied to characterising mineral composition in terms
of presence or absence but not quantifying mineral abundances (Clark
et al., 2003). Non-linear models, such as the single scattering albedo
model of Hapke (Hapke, 2002; Warell and Davidsson, 2010) have
been successful in predicting the abundances of minerals in intimate
mixtures. Themain reasonwhy such a nonlinear approach is notwidely
adopted is the amount of detailed information on the scattering proper-
ties of all endmembers needed to perform the calculations (Keshava
and Mustard, 2002). Alternatively, the modelling of reflectance and
the inference of absorption components within complex features can
be done by fitting Gaussian curves or modified Gaussian curves to the

absorption features and absorption components in reflectance spectra
of minerals also referred to as spectral deconvolution (Burns, 1993;
Noble et al., 2006; Roush and Singer, 1986; Singer, 1981). Sunshine
et al. (1990) provided the explanation for Gaussian behaviour of ab-
sorption features. The signal sensed by a spectrometer corresponds to
the mean response frommassive amounts of electronic and vibrational
processes that cause absorption around specific wavelengths (absorp-
tion bands). Owing to the Central Limit Theorem, an absorption feature
closely resembles a Gaussiandistribution. Alternatively, the exponential
Gaussian optimisation (EGO) of Pompilio et al. (2009) has been
designed to model absorption components which are not Gaussian in
shape and accounts for saturation and asymmetry effects. The use of
such a quantitative deconvolution method for a spectrum of a specific
composition is dependent only on the spectra and absorption of themin-
erals themselves rather than the detailed information on the scattering
properties required for the Hapke model (Shepard and Helfenstein,
2007). It provides the means to study the individual absorption compo-
nents in spectra and interpretation of these can then be analysed in
terms of composition (Sunshine et al., 1990).

Modified Gaussian models have been demonstrated in laboratory
experiments by mixtures with two constituents of interest using either
multiple linear regression techniques (Bishop et al., 2011; Singer, 1981)
or the ratio between intensities of absorption components (Kanner et
al., 2007; Sunshine and Pieters, 1993). It has thus been assumed that
the model parameters vary as a linear function of the relative propor-
tions of the constituents in the mixture (Pompilio et al., 2009;
Sunshine and Pieters, 1998). Samples with similar mineralogy but un-
known abundance can then be predicted by the calibrated mixtures
models. However, such approach is insufficient for the prediction of
mixtures with more than two minerals. Model parameters might vary
linearly over a short range of themixture possibilities but over the com-
plete range ofmixture possibilities, non-linearity dominates. As a result,
a different type of analysis is required to relate the EGO parameters to
the mineral content in order to determine abundances of three or
more minerals within a mixture. We propose a recursive partitioning
of the data by regression tree analysis (Breiman et al., 1984). Regression
tree analysis allows to deal with nonlinearity and interactions between
the EGO parameters. Regression trees can be trained by setting decision
rules based on the predictive structure of the dataset with mineral mix-
tures (Breiman et al., 1984). This approach is an often used datamining
technique in several disciplines (De'Ath and Fabricius, 2000;McBratney
et al., 2003; Yang et al., 2003).

Below we give details on combining the deconvolution by EGO and
the use of regression trees on the EGO parameter values for quantifying
mineral abundances of mixtures having more than two constituents.
The approach is demonstrated on a range of prepared samples with
known abundances of kaolinite, dioctahedral mica, smectite, calcite
and quartz and on a set of field samples from Morocco, which were
quantitatively analysed by XRD analysis.

2. Methods

2.1. Spectral deconvolution byGaussianmodelling of absorption components

Deconvolution of the spectra by fitting Gaussian curves needs to be
concerned with partly overlapping absorption components (Sunshine
and Pieters, 1993) as well as the presence of amorphous materials and
impurities that may modify absorption band shapes and contribute to
saturation and asymmetry of spectral features (Burns, 1993; Pompilio
et al., 2009). TheModifiedGaussianModel (MGM)describes absorption
components as modified Gaussian distributions that are parameterised
by a band centre, band width (full width at half maximum) and band
strength (amplitude intensity), for more details see Sunshine et al.
(1990) and Kanner et al. (2007). In several studies MGM has been suc-
cessfully used tomodel overlapping absorptions components (Bishop et
al., 2011; Kanner et al., 2007; Lane et al., 2011; Ogawa et al., 2011; Pinet
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Fig. 1. Continuum removed reflectance of calcite and mixtures containing calcite. The
mixtures contain minerals of which the additional mineral with absorption features has
an abundance of approximately 15% and a sample of calcitewith 25% quartz (spectra orig-
inate from field samples measured in this experiment, the calcite spectra contain a small
trace of mica).
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