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Soil CO2 effluxwasmeasuredwith a closed chamber systemalong a 180 m transect on a bare soilfield characterized
by a gentle slope and a gradient in soil properties at 28 days within a year. Principal component analysis (PCA) was
used to extract the most important patterns (empirical orthogonal functions, EOFs) of the underlying spatiotempo-
ral variability in CO2 efflux. These patternswere analyzedwith respect to their geostatistical properties, their relation
to soil parameters obtained from laboratory analysis, and the relation of their loading time series to temporal vari-
ability of soil temperature andmoisture. A particular focuswas set on the analysis of the overfitting behaviour of two
statistical models describing the spatiotemporal efflux variability: i) a multiple regression model using the k first
EOFs of soil properties to predict the n first EOFs of efflux, which were then used to obtain a prediction of efflux
on all days and points; and ii) a modified multiple regression model based on re-sorting of the EOFs based on
their expected predictive power. It was demonstrated that PCA helped to separate meaningful spatial correlation
patterns and unexplained variability in datasets of soil CO2 efflux measurements. The two PCA analyses suggested
that only about half of the total variance of efflux could be related to field-scale spatial variability of soil properties,
while the other halfwas “noise” attributed to temporalfluctuations on theminute time scale and short-range spatial
heterogeneity on the decimetre scale. The most important spatial pattern in CO2 efflux was clearly related to soil
moisture and the driving soil physical properties. Temperature, on the other hand, was the most important factor
controlling the temporal variability of the spatial average of soil respiration.

© 2012 Elsevier B.V. Open access under CC BY-NC-ND license.

1. Introduction

CO2 efflux from the soil is oneof the largestfluxes in the atmospheric
greenhouse gas balance and of particular interest due to its potential
positive feedback to global warming (IPCC, 2007). However, the envi-
ronmental factors controlling the magnitude of CO2 efflux remain diffi-
cult to disentangle, even though an increasing number of case studies
have been published during past decades (for an overview, see e.g.
Bond-Lamberty and Thomson, 2010). The reasons for this are rooted in
the numerous interactions between environmental factors and CO2 ef-
flux, in combination with the different scales on which they vary in
space and time (Briones, 2009; Davidson and Janssens, 2006; Mahecha
et al., 2010;Wixon and Balser, 2009). Pointmeasurements of soil CO2 ef-
flux have repeatedly been reported to exhibit a poor spatial dependence
and strong variability at short distances (i.e. a high nugget effect, see
Herbst et al., 2009; La Scala et al., 2000; Rochette et al., 1991;
Rodeghiero and Cescatti, 2008). Consequently, correlations with
expected driving variables in space appear to be low (Herbst et al., in
press).

We hypothesize that the difficulty of understanding the driving
factors of spatial variability of soil respiration is partly caused by
short-term temporal fluctuations that inevitably occur during the ac-
quisition of a spatial data set of soil CO2 efflux. Recently, we showed
that by repeating a survey with a sufficiently high frequency, the
raw measurements can be decomposed by simple averaging proce-
dures into estimates of the time-stable part of the spatial pattern of
efflux, and fast fluctuations of area-averaged efflux (Graf et al.,
2011). However, this study also reported that the spatial patterns
were only stable for a few days. Often, measurements are only repeated
at larger time intervals and the decomposition approach reported in
Graf et al. (2011) cannot meaningfully be applied. Alternatively, under-
lying spatial patterns present in the entire data set can be investigated
using empirical orthogonal functions (EOFs) derived by principal com-
ponent analysis (PCA, cf. Korres et al., 2010; Perry and Niemann, 2008,
for soil water content) or canonical correlation analysis. These EOFs
can be related to explanatory variables such as the spatio-temporal var-
iability of soil properties, including soil temperature and moisture
amongst others. Unlike classical regression,whichwould link the spatial
pattern of efflux to explanatory variables independently for each snap-
shot in time, PCAprovides insight into the combined spatiotemporal de-
pendencies of soil CO2 efflux. PCA has also been shown to efficiently
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separate noise from signal (e.g. Perry and Niemann, 2008), a property
that would be of particular interest for soil CO2 efflux datasets.

The aim of this study is to test whether PCA can be used to identify
spatio-temporal patterns of soil CO2 efflux with statistically signifi-
cant relations to explanatory variables. We used measured CO2 efflux
from a bare soil with a gentle slope and a gradient in various soil
properties, which serve as explanatory variables. To identify and de-
scribe returning spatial patterns in the efflux time series and the ex-
planatory variables without redundancy, both datasets are turned
into EOFs independently using PCA. Two types of regression models
are considered: one for the two sets of EOFs in their original order,
and one where EOFs are re-ordered according to their expected pre-
dictive power. For each regression model, performance on unknown
samples as a function of the number of EOFs was determined by
cross-validation.

2. Theoretical background

Consider the dependent variable Ym,n known for M sampling
points and Nmeasurement times. In addition, there are K explanatory
variables contained in Xm,k. These explanatory variables vary in space,
but are assumed to be persistent in time. Therefore, they are available
at the same M sampling points, but without repetition in time. To de-
termine to what extent Y can be explained by X, canonical correlation
analysis (CCA, Hotelling, 1935) is frequently used. However, standard
methods for solving CCA require that min{N, K}bM. If this is not the
case, a common approach is to perform a principal component analy-
sis (PCA, Hotelling, 1933) independently on both X and Y before fur-
ther analysis (Muller, 1982). PCA transforms a set of variables into a
set of new variables, called principal components (PCs) or empirical
orthogonal functions (EOFs), that are linearly independent of each
other. They are ordered by the portion of total variance in the original
data that they explain (see appendix for more details). If N or K is
larger than M, PCA reduces the number of non-zero new variables
to M. Prior application of PCA on both X and Y reduces a subsequent
CCA to a rotation (Muller, 1982). Often, the CCA step is omitted alto-
gether and the prediction of Y from X is done by regression. Because
the EOFs determined from X and Y are orthogonal, the regression co-
efficients can be independently determined by bivariate regression
between each possible pair of EOFs. This intermediate approach be-
tween multiple regression and CCA (Jolliffe, 1982) is here referred
to as PCA-based regression.

If the number of explanatory variables K is large compared to the
number of sampling points M, there is a danger of overfitting. Adding
an additional explanatory variable will always improve the ability of
the model to fit the data (in-sample performance). However, overfit-
ting has occurred when at the same time the ability of the model to
predict independent data decreases (out-of-sample performance).
In multiple regression, adjusted goodness-of-fit indices such as R²adj
or Aikake´s information criterion are often used to estimate the opti-
mum number of explanatory variables (e.g. Herbst et al., in press), or
a significance test is performed for each candidate explanatory vari-
able. For EOFs, a number of significance tests have been suggested.
However, their results are often inconsistent (Peres-Neto et al.,
2005; Perry and Niemann, 2008), may require prior knowledge of
the correlation length in order not to overestimate the number of inde-
pendent samples (Korres et al., 2010), and are not necessarily related to
predictive power. Jolliffe (1982) summarized four examples demon-
strating that predictive success, rather than explained variance, should
be used to determine the EOFs to be included in PCA-based regression
problems. Nevertheless, and in particular to ensure the relevance of
the predicted EOFs of Y, we will report results of two significance tests
for comparison. According to Peres-Neto et al. (2005), both are recom-
mendable, but differently conservative.

The most direct, assumption-free, and intercomparable method to
estimate out-of-sample performance, is cross-validation. A subset of

the available data is excluded before parameter determination, and
the goodness-of-fit indices are calculated between the predictions
and measurements of Y in this unused subset only. A prerequisite for
cross-validation is that the independent data set must be large enough
to reliably determine the goodness-of-fit indices, but at the same time
the data set remaining for model parameterisation must also be large
enough. In case of a small number of sampling sites, this problem can
be circumvented by the leave-one-out version of cross validation.
One at a time, each of the M rows of X and Y are removed from the
dataset, and the remaining M-1 rows are used to estimate the un-
known model parameters. Then, each of the M alternative model ver-
sions is used to predict the row of Y values that was left out. Leave-
one-out cross-validation enables us to quantify the effect of including
each EOF of both the X and the Y set in the regression model, starting
with the first EOF. As an EOF of X may describe a large portion of the
variance of X, but not predict well any of the EOFs of Y (Jolliffe,
1982), we also test an approach where the EOFs of both X and Y are
re-sorted according to the amount of variance in Y that they help to ex-
plain. This approach adds the strength of CCA to PCA-based regression,
while avoiding its predictive weakness. CCA tends to assign strong
weights to few or even one X and Y pair(s), if they are correlated con-
siderably stronger to each other than the majority, independent of the
portion of variance in Y they explain (Mishra, 2009). An intermediate
solution between PCA and CCA was proposed by Mishra (2009) to
solve this problem, but the application of this method is beyond the
scope of this study because of the lack of a closed-form solution for
this method. We performed CCA on our dataset and found that it did
not improve out-of-sample performance as compared to PCA-based re-
gression. For reasons of conciseness, CCA is not discussed further here.

3. Methods

3.1. Study site

Measurements were taken at the FLOWATCH test site (50°52'09''N,
06°27'01''E, 104.5 m a.s.l.), a 60 m by 190 m bare soil field (Graf et al.,
2008; Weihermüller et al., 2007). In its longitudinal direction, the field
is subject to a gentle slope and a strong gradient in coarse material con-
tent (Fig. 1). At the centre of the field, the fine texture (b2 mm) is clas-
sified as a silt loam. The climate is warm temperate, with an average air
temperature of 9.9 °C and an annual precipitation of 698 mm
(1961–2009, data taken from the climate station of the Forschungszen-
trum Jülich at a distance of 5.3 km from the test site). The two years of
the experimental study were slightly warmer and wetter (2006:
11.0 °C, 723 mm; 2007: 11.1 °C, 878 mm). Historically, the field was
typically ploughed annually up to a depth of 30 cm. Directly before
and once during the study period, a grubber to a depth of 15 cm and a
harrow were applied. With this treatment and several applications of
glyphosate, weeds were controlled on the field site during our
measurements.

3.2. Field measurements

Soil CO2 efflux measurements were performed using a manual
closed chamber system (LI-8100, Li-Cor, Lincoln, NE, USA; Xu et al.,
2006) in intervals of one to two weeks between summer 2006 and
autumn 2007. At each measurement point, a polypropylene collar of
10 cm depth and 20 cm inner diameter was permanently installed
such that the upper edge protruded 2 cm above the average soil sur-
face. Collars were kept free of plants as much as possible and were re-
moved only for soil grubbering and harrowing. The location of each
measurement point was determined using a differential GPS system
(GPS-702-GG/Propak V3, NovAtel, Calgary, Alberta, Canada).

In this analysis, we use efflux data from 18 points spaced 10 m
apart in a transect following the main height and stone content gradi-
ent of the field site (Fig. 1). For this transect, complete efflux records
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