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a b s t r a c t

The present contribution quantifies the relative importance of climate modeling factors and chosen
response variables upon controlling the variance of streamflow forecasted with global climate model
(GCM) projections, which has not been attempted in previous literature to our knowledge. We designed
an experiment that varied climate modeling factors, including GCM type, project phase, emission scenar-
io, downscaling method, and bias correction. The streamflow response variable was also varied and
included forecasted streamflow and difference in forecast and hindcast streamflow predictions. GCM
results and the Soil Water Assessment Tool (SWAT) were used to predict streamflow for a wet, temperate
watershed in central Kentucky USA. After calibrating the streamflow model, 112 climate realizations
were simulated within the streamflow model and then analyzed on a monthly basis using analysis of
variance. Analysis of variance results indicate that the difference in forecast and hindcast streamflow pre-
dictions is a function of GCM type, climate model project phase, and downscaling approach. The predic-
tion of forecasted streamflow is a function of GCM type, project phase, downscaling method, emission
scenario, and bias correction method. The results indicate the relative importance of the five climate
modeling factors when designing streamflow prediction ensembles and quantify the reduction in uncer-
tainty associated with coupling the climate results with the hydrologic model when subtracting the hind-
cast simulations. Thereafter, analysis of streamflow prediction ensembles with different numbers of
realizations show that use of all available realizations is unneeded for the study system, so long as the
ensemble design is well balanced. After accounting for the factors controlling streamflow variance,
results show that predicted average monthly change in streamflow tends to follow precipitation changes
and result in a net increase in the average annual precipitation and streamflow by 10% and 11%, respec-
tively, for the wet, temperate watershed.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Within the hydrologic sciences community, increased emphasis
is being placed on gaining an understanding of how climate change
will impact hydrologic processes and streamflow throughout the
streams and rivers of the world. Specifically, the GCM projections
of increased and decreased precipitation in wet and dry regions,
respectively, are of great interest regarding how such occurrences
could produce long term changes in regional water balances.
Notwithstanding the importance of forecasted streamflow, climate
scientists are quick to point out the inherent uncertainty associ-
ated with GCM projections due to their underlying assumptions

and parameterizations. Further, as GCM projections are down-
scaled and propagated through hydrologic models, the hydrologic
community has cautioned the use of the reliability of forecasted
streamflow results due to the propagation of uncertainty derived
from climate projections as well as the multiple levels of uncer-
tainty that can be introduced throughout the hydrologic modeling
process. Our motivation in this contribution is to broaden under-
standing of how factors, termed herein ‘climate modeling factors’,
inherent of climate and hydrologic model coupling as well as fore-
casted streamflow response variables impart uncertainty within
streamflow projections, and to apply our new knowledge for pre-
dicting future streamflow in a wet, temperate stream.

Studies that investigate uncertainty introduced during stream-
flow forecasting with GCM projections have become prevalent in
the hydrologic literature over the past decade (e.g., Tu, 2009;
Neupane and Kumar, 2015a,b). Investigations of uncertainty have
for the most part been much more well received by scientists as

http://dx.doi.org/10.1016/j.jhydrol.2016.08.054
0022-1694/� 2016 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Department of Civil Engineering, University of
Kentucky, 354G O. H. Raymond Bldg., Lexington, KY 40506-0281, United States.

E-mail addresses: nabil.hussain@uky.edu (N. Al Aamery), james.fox@uky.edu
(J.F. Fox), msnyder@pmc.ucsc.edu (M. Snyder).

Journal of Hydrology 542 (2016) 125–142

Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/ locate / jhydrol

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2016.08.054&domain=pdf
http://dx.doi.org/10.1016/j.jhydrol.2016.08.054
mailto:  nabil.hussain@uky.edu  
mailto:james.fox@uky.edu
mailto:msnyder@pmc.ucsc.edu
http://dx.doi.org/10.1016/j.jhydrol.2016.08.054
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol


compared to specific results of forecasted streamflow, the latter of
which are somewhat viewed as a moving target. Uncertainty stud-
ies of forecasted streamflow have focused on a number of factors
that have been found to introduce variability of results (see
Table 1). Emphasis has been placed on uncertainty from the choice
of GCM and emission scenarios, and hence showed a need for
numerous climate forcings in hydrologic predictions due to model
assumptions and uncertainty of fossil fuel emissions over the next
50 years (Sheshukov et al., 2011; Harding et al., 2012). A number of
studies have focused on the choice of statistical downscaling as
compared to the more physically-based dynamical downscaling
of GCM results for input to hydrologic models, and emphasized
the differences that can result in streamflow prediction dependent
upon the downscaling method (Chen et al., 2011; Mejia et al.,
2012; Chen et al., 2012; Al-Mukhtar et al., 2014; Fatichi et al.,
2014). Further, questions have been raised regarding uncertainty
as well as stationarity assumptions introduced by precipitation
and temperature bias correction techniques (Teutschbein and
Seibert, 2012).

One potential uncertainty impacting streamflow forecasts that
has not been thoroughly investigated is the choice of climate pro-
ject phase, defined here to indicate the difference in the same
GCMs between different model intercomparison projects. The pro-
ject phase factor requires investigation of how advancement in cli-
mate model sophistication and emission scenario projection might
impact streamflow uncertainty. Specifically, recent completion of
the Coupled Model Intercomparison Phase 5 (CMIP5) provides a
new dataset of climate forcings relative to CMIP3. CMIP5 uses
the Representative Concentration Pathways (RCP) as the emission
scenarios which represent a newer advancement of the future
development in greenhouse gas emission. In addition, CMIP5 uses
the newest versions of GCMs for its projections. CMIP3 represents
the extensively published phase three results from GCMs and uses
the Spatial Report on Emission Scenarios (SRES). Both project
phases have reported statistically downscaled climate model
results and have made use of bias-correction and spatial disaggre-
gation and daily bias-correction and constructed analogs statistical
downscaling methods for precipitation and minimum and maxi-
mum surface air temperature; and the North American Regional
Climate Change Assessment Program (NARCCAP) has published
extensive results of dynamically downscaled GCM results that
can be compared to the statistical downscaling reported from
CMIP3. In particular, the new CMIP5 has been promoted as a
new information module for climate change predictions but at
the same time has not been quantified as necessarily a more reli-

able source of climate projections compared to CMIP3 (Brekke
et al., 2013). Uncertainty introduced by CMIP5 into hydrologic pre-
dictions remains relatively untested, and one contribution of this
paper is testing the importance of project phase upon streamflow
predictions.

Results of past studies have shown the potential of ‘climate
modeling factors’, including GCM type, emission scenario, down-
scaling method, and bias correction technique, to introduce uncer-
tainty in forecasted streamflow for some case studies (Table 1). In
addition to these climate modeling factors, project phase will be
investigated herein. We also take the next logical step in uncer-
tainty analysis and strive to investigate the relative importance
of each climate modeling factor imparting uncertainty upon fore-
casted streamflow. No studies have attempted to quantify the rel-
ative importance of the different climate modeling factors
impacting the variance of streamflow forecasted with GCM projec-
tions. It is well recognized that the first decade of this fairly new
branch of hydrologic research (see Table 1) has relied on gaining
an understanding of the factors that might impact the results of
forecasted streamflow. However, at the same time, we recommend
a shift towards uncertainty analyses that aims to partition variance
into different factors in order that the most controlling factors
imparting uncertainty are included in streamflow forecast analy-
ses. It is recognized that the partitioning of variance for streamflow
forecasts is not a narrow task and likely numerous permutations
are needed that vary climate type in terms of precipitation (e.g.,
wet regions, dry regions) and temperature (e.g., tropics, temperate,
frigid), spatial scale (e.g., catchment, watershed, basin), projected
target dates (e.g., 2050, 2100), landscape characteristics (e.g., low-
land agricultural, mountainous forested), and streamflow response
(e.g., baseflow, mean streamflow, flood extremities). Nevertheless,
the present study works towards this broad goal for the first time
to our knowledge by analyzing the uncertainty imparted upon
streamflow forecasts by considering a suite of climate modeling
factors, including GCM, project type (i.e., CMIP3 versus CMIP5),
emission scenario, downscaling method (i.e., statistical versus
dynamic), and bias correction. We cast this uncertainty investiga-
tion within a specific hydrologic model analysis that focuses on
forecasting mean streamflow for 2046–2065 for a lowland agricul-
tural watershed within a temperate, wet region.

In addition to investigating climate modeling factors impact
upon forecasted streamflow, we also investigate the choice of the
future streamflow response variable within hydrologic model
analysis. We argue that as watershed managers begin to apply
streamflow forecasts in their planning and decision making pro-

Table 1
Review of climate modeling factors investigated in previous studies.

Author Total realizations Project GCMs Emission scenario Downscaling method Bias correction Response variable

Tu (2009) 3 CMIP3equiv 1 A1B, A2, and B1 Not performed No DQF-H

Chen et al. (2011) 6 CMIP3equiv 1 A2 Statistical and dynamical Yes QF

Sheshukov et al. (2011) 15 CMIP3equiv 15 A2 Statistical No QF, DQF-H

Farmarzi et al. (2012) 18 CMIP3equiv 5 A1F1, A1B, A2, and B1 Statistical No QF, DQF-O

Ficklin et al. (2012) 32 CMIP3 16 B1 and A2 Statistical No QF, DQF-O

Harding et al. (2012) 112 CMIP3 16 A2, A1B, B1 Statistical No QF, DQF-H

Mejia et al. (2012) 2 CMIP3 1 NA (historical period only) Statistical and dynamical No QH

Chen et al. (2012) 4 CMIP3equiv 3 A2 Statistical and dynamical Yes QF, DQF-O

Chien et al. (2013) 28 CMIP3 9 A1B, A2, and B1 Statistical Yes QF, DQF-H

Ficklin et al. (2013) 16 CMIP3 16 A2 Statistical No QF, DQF-O

Guimberteau et al. (2013) 24 CMIP3equiv 8 A2, A1B, B1 Statistical No DQF-O

Park et al. (2013) 2 CMIP3equiv 1 A2 and B2 Statistical No QF, DQF-O

Al-Mukhtar et al. (2014) 12 CMIP3equiv 1 A1B Statistical and dynamical Yes DQF-O

Fatichi et al. (2014) 34 CMIP3 13 A1B Statistical and dynamical Yes QF, DQF-H

Wang et al. (2014) 12 CMIP3 4 A1B, A2, and B1 Statistical Yes DQF-O

Neupane and Kumar (2015a) 48 CMIP3 16 A1B, A2, and B1 Statistical No DQF-O

Neupane and Kumar (2015b) 48 CMIP3 8 A1B, A2, and B1 Statistical No DQF-O

Note: CMIP3eqiuv means that the model version or downscaling method differed (i.e., NARCCAP) than those in the CMIP3 project but the used model and emission scenarios
were the same.

126 N. Al Aamery et al. / Journal of Hydrology 542 (2016) 125–142



Download English Version:

https://daneshyari.com/en/article/6409228

Download Persian Version:

https://daneshyari.com/article/6409228

Daneshyari.com

https://daneshyari.com/en/article/6409228
https://daneshyari.com/article/6409228
https://daneshyari.com

