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a b s t r a c t

In this paper, a second order accurate cell-centered finite volume method (FVM) is coupled with a finite
element method (FEM) to solve the deformation of a saturated porous layer based on Biot’s consolidation
model. The proposed numerical technique is applied to the fully unstructured triangular grids to simulate
actual geological formations. To reconstruct the pressure gradient at control volume faces, the diamond
scheme is implemented as a multipoint flux approximation method. Also the least square algorithm is
used to interpolate pressure at the vertices from the cell-center values. The stability of this numerical
model is studied in comparison to the different FEMs through various examples. It is shown that,
although the Taylor-Hood FEM has been introduced as a remedy for violation of the inf-sup condition,
it does not entirely remove the non-physical oscillations. Contrary to the linear and Taylor-Hood FEMs,
the proposed discretization model provides monotonic solution without imposing any restriction on
the mesh or time step size. Compared to the mixed FEM, the method achieves local mass balance with
fewer degrees of freedom. To couple the flow and mechanical sub-problems, the fixed-stress operator
split is implemented as an iterative sequential method, due to its unconditional stability, accuracy and
high rate of convergence. The accuracy of the proposed model is verified via a range of examples includ-
ing analytical and numerical solutions. The performance of this methodology is assessed through model-
ing of subsidence in an aquifer-interbed system. This problem illustrates the capability of the model in
providing stable solution in heterogeneous domains with complicated shapes.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Groundwater is a vital natural resource throughout the world
especially in arid and semi-arid regions. Rapidly growing demands
for water in agricultural, industrial and municipal applications,
causes overexploitation of water supply from aquifers. The result-
ing groundwater depletion is associated with adverse geo-
environmental impacts. The major worldwide hazard originated
from extensive pumping is the human-induced subsidence, which
is referred as one of the main water-related disasters in IHP-VIII
(2014–2021) (International Hydrological Programme-eighth
phase) (Gambolati and Teatini, 2015; Donoso et al., 2013).
Especially in coastal areas, the impact of subsidence on the flood
risk and land inundation is a major concern (Erkens and
Sutanudjaja, 2015). For example in the Mekong river delta
(Vietnam) with the area of 55,000 square kilometers, the

subsidence rate of 1–4.7 cm/year, can lead to about one meter of
sinking by midcentury which can affect the life of about 20 million
people (Schmidt, 2015).

The conventional model widely used to simulate subsidence
problems is based on Terzaghi’s theory, taking into consideration
the pore compressibility parameter in the diffusion flow equation
to describe deformability of the porous medium (Terzaghi, 1943).
Although this one dimensional consolidation theory is well suited
for the cases where horizontal to vertical strain ratio tends to zero,
it has limitations on modeling complex features of fluid flow
through compressible porous media (Gutierrez and Lewis, 2002).
Such an example is the well-known Mandel-Cryer effect
(Gutierrez and Lewis, 2002; Mandel, 1953; Cryer, 1963) which
can be explained by Biot’s theory (Biot, 1941). Indeed, the uncou-
pled flow (diffusion) equation, which is applied for addressing
many environmental issues, is not adequate to model the dynamic
behavior of groundwater flow in hydrological systems that concern
fluid-soil interaction.

Since the analytical solutions derived for Biot’s differential
equations are restricted to simple cases, the numerical methods
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provide powerful tools to deal with coupled problems especially in
realistic applications. A commonly used numerical technique for
spatial discretization of the geomechanical problems is the finite
element method (FEM) (Gutierrez and Lewis, 2002; Zienkiewicz
et al., 1999; Lewis and Schrefler, 1998; Ferronato et al., 2001).
Despite the flexibility of this technique in modeling complex
geometries, the standard procedure suffers from numerical oscilla-
tions in the time-dependent poroelasticity problems (Vermeer and
Verruijt, 1981; Murad and Loula, 1992; Kim, 2010; Ferronato et al.,
2010). These nonphysical oscillations occur for two reasons: first,
the violation of the inf-sup condition and second, the discontinuity
in the derivative of pressure at the interface between two layers
with different permeabilities and also at the drainage boundary
(Vermeer and Verruijt, 1981; Murad and Loula, 1992; Kim, 2010).
Indeed, to obtain the variational formulation of the Biot’s consoli-
dation model in the FEM, two function spaces are considered for
the pore pressure and displacement fields. It is shown and proven
that the stability of the solution of this variational form depends on
the inf-sup or LBB (Ladyzenskaja-Babuska-Brezzi) condition
(Murad and Loula, 1992, 1994). In this condition, for any pair of
functions belongs to these two spaces, the norm of bilinear form
of this pair divided by the corresponding norms should be bounded
below by the constant which is independent of mesh size (Babuska,
1973; Brezzi, 1974). This well-known condition which is accepted
for providing the well posed discrete Galerkin approximation, does
not necessarily lead to stable solutions (Vermeer and Verruijt,
1981; Murad and Loula, 1992; Rodrigo et al., 2016). For this reason
the stabilized finite element methods have been proposed to elim-
inate such instabilities (e.g., Wan, 2002; Wan et al., 2003; Truty
and Zimmermann, 2006; White and Borja, 2008; Rodrigo et al.,
2016). However, this class of discretization methods is not locally
conservative (Wan, 2002) and appropriate stabilization term due
to the physics and properties of the problem is needed.

In order to overcome the stability problems and ensure local
mass conservation in flow domain, the classes of mixed FEM and
FVM are presented in recent years for the saturated and multi-
phase flow problems, (e.g., Phillips and Wheeler, 2007a,b; Jha
and Juanes, 2007; Ferronato et al., 2010; Kim, 2010; Caviedes-
Voullième et al., 2013; Manzini and Ferraris, 2004; Asadi et al.,
2014; Asadi and Ataie-Ashtiani, 2015). Due to the huge computa-
tional cost of the mixed FEMs, FVM has been developed in this
study to simulate the flow equation. Also the complex geometric
domains are treated through the fully unstructured triangular
grids, which are the most general and flexible type of mesh for
describing complicated geological formations (Lee et al., 2002).
Since in this meshing method, the line connecting two adjacent
elements centers is not generally orthogonal to the corresponding
face, the multipoint flux approximation (MPFA) methods are
required to estimate the inter-element flux with higher accuracy.
Here, the diamond scheme is implemented as a MPFA method in
the framework of cell-centered finite volumes (CC-FV) (Coudière
et al., 1999; Coudière and Villedieu, 2000; Bertolazzi and
Manzini, 2005, 2004; Manzini and Ferraris, 2004; Bevilacqua
et al., 2011). In this approach, by using the least square method
to interpolate pressure at the vertices from the cell-center values,
the second order of accuracy can be achieved, as investigated in
Bertolazzi and Manzini (2004) and Manzini and Ferraris (2004).
To complete the spatial discretization of the coupled system, the
finite element approach is employed to formulate the mechanical
equation (Gutierrez and Lewis, 2002; Zienkiewicz et al., 1999;
Lewis and Schrefler, 1998; Gambolati et al., 2001). This combined
discretization algorithm (CCFV-FE) benefits from stability and local
conservation properties as well as accommodating complex
geometries on fully unstructured grids.

To couple the flow and mechanical sub-problems, the iterative
sequential method of fixed-stress is implemented. This operator

split has been successfully applied to the multi-dimensional cou-
pled systems involving saturated and multiphase flow in elastic,
elastoplastic and faulted domains (Kim et al., 2011a, 2011b; Kim,
2010; Jha and Juanes, 2014). Asadi et al. (2014) compared different
sequential strategies with various degrees of coupling and demon-
strated the superior performance of this method in comparison
with other staggered algorithms. This algorithm has successfully
been implemented to the different forms of the coupled multi-
phase flow and geotechnical deformation by Asadi and Ataie-
Ashtiani (2015) to reduce CPU time and values of errors. Due to
the unconditional stability (Kim et al., 2011a; Kim, 2010), accuracy
and higher rate of convergence of this scheme in comparison to
other sequential methods (Asadi et al., 2014), it is employed in this
study.

The CCFV-FE method proposed in this study is validated and
examined against analytical and numerical solutions presented in
literature. In addition, to show the capability of the model in tack-
ling land subsidence problems in heterogeneous domains with
complicated shapes, the aquifer with a lens-shaped interbed is
simulated.

The objective of this study is to develop and validate the cou-
pled flow-geomechanical model with the aim to ensure stability,
yield local mass conservation and accommodate complex geome-
tries based on unstructured grids. Moreover, the solver applied in
this method is a partitioned solution procedure, which reduces
the required memory and utilizes single computational grid for
both the flow and mechanical simulators. The proposed hybrid
FV-FEM has been compared to other numerical discretization
methods in terms of stability, accuracy and computational cost
and the advantages of this scheme have been discussed.

2. Mathematical formulation

Based on Biot’s theory for consolidation of fluid-saturated por-
ous media, the coupled model of flow and mechanics reads (Biot
and Willis, 1957; Lewis and Schrefler, 1998):

@

@t
1
M

pþ ar � u
� �

þ divv ¼ f ð1Þ

divr̂þ b ¼ 0 ð2Þ
In the above system of partial differential equations, Eq. (1)

defines the conservation of the fluid mass in a deformable porous
media in which t is time, p denotes the fluid pressure and u is
the solid displacement vector. M is the Biot modulus which can

be defined as /
Kf
þ a�/

Ks

� ��1
, v ¼ K

qgrp represents the Darcy’s velocity

and a is the Biot coefficient which is equal to 1� KT
Ks
. Also / is the

porosity, Kf , Ks and KT are the bulk modulus of the fluid, solid grain

and the porous medium, respectively. The term K refers to the
hydraulic conductivity tensor, q is the fluid density, g is the grav-
itational acceleration and f is a source/sink term.

Under the quasi-static assumption, the equilibrium equation of
the porous medium can be expressed by using Eq. (2) in which r̂ is
the total stress tensor and b denotes the body force. Through the
concept of Terzaghi’s effective stress, the stress relation for the
solid phase is (Terzaghi, 1943):

r̂ ¼ br0 � apI ð3Þ
where br0 is the effective stress tensor and I indicates the Kronecker
delta tensor. To complete the mathematical model, the constitutive
relationship between the effective stress and strain is assumed to be
linear. In order to solve this mathematical model, two sets of
boundary conditions according to the flow and mechanical
equations are required as follows:
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