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a b s t r a c t

The stochastic runoff-runon process models the volume of infiltration excess runoff from a hillslope via
the overland flow path. Spatial variability is represented in the model by the spatial distribution of rain-
fall and infiltration, and their ‘‘correlation scale”, that is, the scale at which the spatial correlation of rain-
fall and infiltration become negligible. Notably, the process can produce runoff even when the mean
rainfall rate is less than the mean infiltration rate, and it displays a gradual increase in net runoff as
the rainfall rate increases.
In this paper we present a number of contributions to the analysis of the stochastic runoff-runon pro-

cess. Firstly we illustrate the suitability of the process by fitting it to experimental data. Next we extend
previous asymptotic analyses to include the cases where the mean rainfall rate equals or exceeds the
mean infiltration rate, and then use Monte Carlo simulation to explore the range of parameters for which
the asymptotic limit gives a good approximation on finite hillslopes. Finally we use this to obtain an
equation for the mean net runoff, consistent with our asymptotic results but providing an excellent
approximation for finite hillslopes. Our function uses a single parameter to capture spatial variability,
and varying this parameter gives us a family of curves which interpolate between known upper and
lower bounds for the mean net runoff.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

The volume of catchment discharge that reaches a stream via
the overland flow path is critical for water quality prediction,
because it is via this pathway that most particulate pollutants
are generated and transported to the stream channel, via surface
erosion processes. Two of the key properties determining this vol-
ume are the rainfall rate and the infiltration rate. In natural sys-
tems both these rates are variable in both space and in time.

Suppose that our hillslope is divided into cells. If the rainfall
rate exceeds the infiltration rate in a given cell, then the excess will
flow overland to the next cell downhill. Thus the water flowing
into a cell is given by the sum of the rainfall and runon from the
cell above. Any excess, after infiltration is taken into account,
becomes runoff. The resulting system is highly non-linear, because
runoff is truncated below at zero. Nahar (2003) showed that for
soils with moderate to high mean saturated conductivity relative
to rainfall rate, the runoff-runon process plays an important part
in determining the total overland discharge for a hillslope. These

conditions are typical in temperate forests, where saturated con-
ductivity values are usually high, and are common in many other
landscapes for the majority of rainfall events (Dunkerley, 2008).

Because of the complexity of the problem, models that incorpo-
rate both spatial and temporal variability have, to date, been anal-
ysed using numerical simulation methods. Our interest is in
analytic solutions. The most common simplification made in this
context is to neglect spatial variability and model rainfall and infil-
tration as a function of time only. This can be attributed to the
early development of analytical expressions for the temporal
change in infiltration rate at a point (Green and Ampt, 1911). For
catchment scale predictions these point-scale results have gener-
ally been scaled up by optimizing the infiltration parameters using
catchment or hillslope runoff time-series data. As a result of this
scaling process, the parameters lose their physical meaning (e.g.
see discussion by Grayson et al., 1992). A recent alternative is the
stochastic runoff-runon process introduced by Jones et al. (2009)
and developed in Jones et al. (2013) and Harel and Mouche
(2013, 2014). The stochastic runoff-runon process allows for spa-
tial variability but assumes temporal stationarity. It does however
admit analytic asymptotic solutions, with parameters that retain
their physical meaning. In this paper we pay particular attention
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to how the model behaves on finite hillslopes, when the previously
obtained asymptotic solutions are not available.

Hawkins and Cundy (1987) were the first to propose an analytic
solution to the net runoff generation problem incorporating vari-
ability in the spatial dimension. Hawkins and Cundy showed that
for an area with constant rainfall and spatially variable infiltration
there exist maximum and minimum curves relating the net runoff
rate to the precipitation rate; see Fig. 1. The curves are derived by
arranging the point infiltration values from largest to smallest, or
vice versa. The true (but generally unknown) function relating pre-
cipitation rate to net runoff rate must lie between these enveloping
curves. Assuming that the distribution of infiltration rates has an
exponential density with mean mi and that the rainfall is constant
with rate mp (both in mm/h), the minimum net runoff rate is
mp �mi, for mp P mi, and the maximum is

mp �mið1� e�mp=mi Þ: ð1Þ
Note that the function depends on precipitation rate and not

time, as the system is assumed to be in temporal equilibrium.
We also see that runoff is generated even when the precipitation
rate is lower than the average infiltration rate, and it increases
gradually as the precipitation rate increases. These are characteris-
tic consequences of including spatial variability.

The Hawkins and Cundy model has not received widespread
attention, despite the fact that Yu and others have reported consid-
erable success using the maximum net runoff curve as the basis of
a runoff model at the plot scale (Yu et al., 1997, 1998; Yu, 1999;
Fentie et al., 2002; Kandel et al., 2005). This approach was found
to perform better than the time-variant, space-invariant Green
and Ampt (1911) model for the prediction of infiltration excess
runoff at the plot scale (Yu, 1999). One of the main contributions
of the present paper is the derivation of a family of curves for
the mean net runoff, which smoothly interpolate between the
upper and lower bounds of Hawkins and Cundy; see Section 5.1,
Eq. (19).

As a consequence of modelling runoff from each cell, the
stochastic runoff-runon process can be used to analyse hillslope
connectivity, whereby adjacent cells are connected if there is run-
off from one to the other. In this context the process has been
called the stochastic runoff connectivity (SRC) process (Sheridan
et al., 2009a,b). Harel and Mouche (2014) also consider connectiv-
ity through the lens of the stochastic runoff-runon process, extend-
ing the model to include lateral diffusion of runoff. We do not
consider connectivity explicitly in this paper, though note that in
Section 3.2 we do draw conclusions about the proportion of the
hillslope that contributes to net runoff.

The structure of the paper is as follows. In Section 2 we give a
definition of the (time-stationary one-dimensional) stochastic
runoff-runon process, and then fit it to some experimental data
using maximum likelihood. The fit is quite good, lending credence
to the model.

In Section 3 we present an analysis of the asymptotic properties
of the model, as the length of the hillslope tends to infinity. Three
regimes emerge, depending on whether the mean rainfall rate is
less than, equal to, or greater than the mean infiltration rate. We
refer to these regimes as subcritical, critical and supercritical
respectively. Then in Section 4 we use Monte Carlo simulation to
quantify the scales at which asymptotic results can be used to
approximate runoff behaviour on finite hillslopes.

In Section 5 we develop a function for the mean runoff rate on a
finite hillslope, as a function of the mean rainfall rate, which spans
all three regimes, subcritical, critical and supercritical. We compare
our function for the mean runoff rate to that of Hawkins and
Cundy, and show that as you increase the spatial variability of
the infiltration rate, our function smoothly transitions from their
lower bound to their upper bound.

A discussion and summary of our results are given in Sections 6
and 7.

2. The stochastic runoff-runon process

The stochastic runoff-runon process is a stochastic time-
invariant model for the flow of infiltration-excess runoff down a
planar hillslope. We model the hillslope as a series of parallel
and independent strips perpendicular to the bottom edge. Each
strip is broken up into a line of blocks or cells of equal size, and
we suppose that within each block the rate of rainfall and infiltra-
tion are fixed. The flow of runoff from one cell to the next down-
slope can be considered a stochastic process spatially indexed by
the position of the cell down the strip.

The runoff-runon model is constructed in two steps. Firstly we
consider the runoff generation down a single strip of land from the
top to the bottom of the hillslope, perpendicular to the contours,
with a random arrangement of rainfall and infiltration capacity
down its length. Analysis of this component of the model draws
on queuing theory. Next, we consider the properties of the aggre-
gated output from these strips. Analysis of this component of the
model depends on the central limit theorem. We can use the cen-
tral limit theorem because we assume that runoff is confined
within strips, so that the net runoff from individual strips is inde-
pendent. This follows from our assumption that the hillslope is
‘‘planar”, that is, the contours are parallel.

2.1. Single strip runoff-runon model

We consider a single strip of land, width lx, divided into blocks
of length ly. Number the blocks 1;2; . . . ;n, starting at the top of the
slope. Let Xk be the rate at which water runs from block k to block
kþ 1, that is, the flow from block k to kþ 1, in m3 h�1. Let pk be the
precipitation (rainfall) rate and ik the infiltration rate for block k,
(both are fluxes, measured in mm h�1), assumed to be constant
over time. If pk > ik then on average runoff builds up down the
length of the block, conversely if pk < ik then on average the runoff
declines. Let the depth of water at the end of block k be dk and let
its speed be vk, then the volume of water leaving the block per unit
time is lxdkvk ¼ Xk. If vk were constant, then we would have dk / ly.
Let Pk ¼ lxlypk=1000 be the flow of rain falling on block k, and let
Ik ¼ lxlyik=1000 be the maximum flow of water absorbed by block
k (both in m3 h�1). Here we assume Pk represents incident rainfall
if there is no canopy or over-story, or through-fall if there is an
over-storey. If we assume that there is no significant runoff onto
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Fig. 1. Bounds on the relationship between precipitation rate (mm/h) and net
runoff rate (mm/h), shown for the case of a mean infiltration rate of 50 mm/h.
Modified from Hawkins and Cundy (1987).
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