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a b s t r a c t

In the last decades, an increasing number of studies analyzed spatial patterns in throughfall by means of
variograms. The estimation of the variogram from sample data requires an appropriate sampling scheme:
most importantly, a large sample and a layout of sampling locations that often has to serve both vari-
ogram estimation and geostatistical prediction. While some recommendations on these aspects exist,
they focus on Gaussian data and high ratios of the variogram range to the extent of the study area.
However, many hydrological data, and throughfall data in particular, do not follow a Gaussian distribu-
tion. In this study, we examined the effect of extent, sample size, sampling design, and calculation
method on variogram estimation of throughfall data. For our investigation, we first generated non-
Gaussian random fields based on throughfall data with large outliers. Subsequently, we sampled the
fields with three extents (plots with edge lengths of 25 m, 50 m, and 100 m), four common sampling
designs (two grid-based layouts, transect and random sampling) and five sample sizes (50, 100, 150,
200, 400). We then estimated the variogram parameters by method-of-moments (non-robust and robust
estimators) and residual maximum likelihood. Our key findings are threefold. First, the choice of the
extent has a substantial influence on the estimation of the variogram. A comparatively small ratio of
the extent to the correlation length is beneficial for variogram estimation. Second, a combination of a
minimum sample size of 150, a design that ensures the sampling of small distances and variogram esti-
mation by residual maximum likelihood offers a good compromise between accuracy and efficiency.
Third, studies relying on method-of-moments based variogram estimation may have to employ at least
200 sampling points for reliable variogram estimates. These suggested sample sizes exceed the number
recommended by studies dealing with Gaussian data by up to 100 %. Given that most previous through-
fall studies relied on method-of-moments variogram estimation and sample sizes �200, currently avail-
able data are prone to large uncertainties.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the last three decades, an increasing number of studies ana-
lyzed spatial patterns in throughfall to investigate the conse-
quences of rainfall redistribution for biogeochemical (Allen et al.,
2015; Hsueh et al., 2016; Möttönen et al., 1999; Whelan et al.,
1998) and hydrological processes in forests (Fathizadeh et al.,
2014; Gerrits et al., 2010; Hsueh et al., 2016; Keim et al., 2005;
Klos et al., 2014; Loescher et al., 2002; Shachnovich et al., 2008;
Staelens et al., 2006; Zimmermann et al., 2009). Other studies ana-
lyzed throughfall spatial patterns to optimize sampling schemes
for estimating mean throughfall (Ziegler et al., 2009;

Zimmermann and Zimmermann, 2014; Zimmermann et al.,
2010). In the majority of cases, variograms were used to character-
ize the spatial properties of the throughfall data.

The variogram is central to geostatistics (Webster and Oliver,
1992, 2007) because it describes spatial variation and provides
the parameters (nugget, sill and range) that are essential for spatial
prediction and the simulation of random fields. It is widely
accepted that estimates of the variogram are sensitive to the size
and spatial arrangement of the sample (e.g. Lark, 2002a; Russo
and Jury, 1987; Webster and Oliver, 1992). Furthermore, there is
ample evidence that the variogram range and sill depend on the
spatial scale of sampling (e.g. Blöschl, 1999; Western and Blöschl,
1999). Several studies investigated the influence of various aspects
of the sampling design on variogram estimation (Bogaert and
Russo, 1999; Blöschl, 1999; Corsten and Stein, 1994; Kerry et al.,
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2008; Lark, 2002a; Morris, 1991; Müller and Zimmerman, 1999;
Pardo-Igúzquiza and Dowd, 2013; Pettitt and McBratney, 1993;
Russo and Jury, 1987; Skøien and Blöschl, 2006; Warrick and
Myers, 1987; Webster and Oliver, 1992; Western and Blöschl,
1999). This work, however, has received little attention among for-
est hydrologists partly because of a missing common language
between environmental statisticians and field hydrologists.

A closer look at the studies that investigated the role of sam-
pling designs on variogram estimation reveals that they can be
divided into three groups. The first group (Bogaert and Russo,
1999; Lark, 2002a; Morris, 1991; Müller and Zimmerman, 1999;
Pettitt and McBratney, 1993; Warrick and Myers, 1987) optimized
sampling designs based on various criteria linked to the variogram.
Early studies (Morris, 1991; Warrick and Myers, 1987) focused on
the distribution of sampling points among the lags. For instance,
Warrick and Myers (1987) presented a criterion that aims on an
equally distributed number of paired comparisons in each lag class.
Morris (1991) criticized this approach because it neglects the cor-
relation of the spatial data and leads to a comparatively low effi-
ciency of the sampling design (van Groenigen, 1999). Subsequent
studies chose other, more complex criteria. For instance, Müller
and Zimmerman (1999) maximized the determinant of Fisher’s
information matrix and Lark (2002a) minimized the kriging vari-
ance to find an optimum configuration of sampling points. In his
comprehensive study, Lark (2002a) demonstrated that (i) a random
process with a small spatial dependence is sampled best with scat-
tered clusters of sampling points, (ii) for long range processes a
regular array is optimal, and (iii) if there is no prior information
about the spatial correlation, sampling in transects is the most
robust approach.

The second group of studies (Corsten and Stein, 1994; Kerry
et al., 2008; Pardo-Igúzquiza and Dowd, 2013; Webster and
Oliver, 1992) sampled simulated random fields to assess the effect
of different sampling designs and sample sizes on variogram esti-
mation. This simple approach has the advantage that the experi-
mental variogram can be compared directly against the
variogram which is based on all data of the simulated field.
Webster and Oliver (1992) sampled different random fields and
concluded that a sample size of 150 would be satisfactory for a pre-
cise estimate of the variogram. Kerry et al. (2008) followed the
approach of Webster and Oliver (1992) and compared residual
maximum likelihood (REML) with method of moment (MoM)
based variogram estimation. They found that REML outperforms
MoM and that a sample size of 100 would be sufficient for vari-
ogram parameter estimation.

The third group of studies (Blöschl, 1999; Skøien and Blöschl,
2006; Western and Blöschl, 1999) investigated effects of scale on
variogram estimation. Although these studies did not primarily
focus on the influence of the sampling design on variogram estima-
tion, their work has important implications for sampling. For
instance, Western and Blöschl (1999) showed that estimates of
the correlation length depend on the extent (i.e. on the size of
the sampling plot).

Most of the studies that assessed the impact of the sampling
design on variogram estimation worked with normally distributed
data. Furthermore, the data of previous studies often showed a
comparatively strong autocorrelation and a long range. Throughfall
data, however, usually do not follow a normal distribution; instead
they often show skewed underlying distributions (Zimmermann
and Zimmermann, 2014) and heavily outlying values (Lloyd and
Marques, 1988; Zimmermann et al., 2009). Moreover, variograms
of throughfall data usually exhibit relatively small ranges com-
pared to the extent of the research area (Möttönen et al., 1999;
Zimmermann and Zimmermann, 2014; Zimmermann et al.,
2009). Therefore, it is not clear if the results of previous studies
apply for the spatial analysis of data with these properties. To fill

this knowledge gap, we sampled a set of unconditional simula-
tions, which we obtained using real-world throughfall data, with
several extents, common spatial sampling designs, and a variety
of sample sizes. We then evaluated these sampling schemes in
terms of their ability to provide satisfactory estimates of the vari-
ogram parameters. For our analysis we used both REML and MoM
variogram estimation.

2. Methods

2.1. Data

From a large throughfall data set (Zimmermann and
Zimmermann, 2014), we selected six events that showed distinct
univariate distributions and autocorrelation structures, respec-
tively. While all events included outlying values (i.e. data points
which cannot be forced to the center of the distribution even after
transformation), events 1 and 5 furthermore showed an underlying
asymmetry (cf. Kerry and Oliver, 2007). This type of asymmetry is
not caused by outliers but by a skew of the underlying (or primary)
distribution of the data, which can be statistically defined as the
region between the first and seventh octile (Zimmermann et al.,
2010). It is important to distinguish between underlying asymme-
try and skewness due to outliers because these deviations from the
normal distribution require different treatments of the data.
Robust variogram estimators can deal with normally distributed
data that are contaminated with outliers. Robust estimators, how-
ever, cannot deal with data that show an underlying skew because
the estimators have a specific consistency correction for contami-
nated normal data (Lark, 2000a). We therefore had to transform
data of events 1 and 5 before further processing.

For each event we constructed a Gaussian random field by
unconditional simulation. The simulated values of fields 1 and 5
were back transformed to ensure that the fields reflected the struc-
ture of the original data. In a final step we contaminated the fields
with outlying values of the respective event (Fig. 1). For an in-
depth description of the construction of the fields we refer to
Zimmermann et al. (2010) and Zimmermann and Zimmermann
(2014). The fields have an edge length of 100 m, a grid unit of
0.1 m and hence consist of 106 data points.

A closer look at the simulated fields (Fig. 1, Table 1) reveals that
they comprise a large span of spatial structures which is reflected
in the variation of the nugget-to-sill ratio and the effective range,
respectively. Relatively strong spatial structures and short autocor-
relation distances characterize fields 3, 4 and 5. Accordingly, these
fields have nugget-to-sill ratios <25% and effective ranges of
around 3 m. In contrast, fields 1 and 2 feature somewhat weaker
spatial structures but a comparatively long autocorrelation dis-
tance. Finally, field 6 features a pure nugget structure and hence
displays no spatial correlation.

2.2. Sampling methods

For our study we tested the influence of the extent, sampling
design, sample size, and methodology on the estimation of the var-
iogram. In this section, we describe the selection of the extent,
sampling design and sample size. In Sections 2.3 and 2.4 we deal
with the variogram estimation methods.

To assess the influence of the extent, we employed three plot
sizes with edge lengths of 25 m, 50 m, and 100 m, respectively.
The largest plots comprised the entire simulation fields. For the
smaller plots we arbitrarily chose the lower left corner of the sim-
ulated fields.

For the analysis of the sampling design we tested random sam-
pling (R) in addition to three regular designs: a regular grid (G), a
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