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a b s t r a c t

In the present study, DREAM(ZS), Differential Evolution Adaptive Metropolis combined with both formal
and informal likelihood functions, is used to investigate uncertainty of parameters of the HEC-HMSmodel
in Tamar watershed, Golestan province, Iran.
In order to assess the uncertainty of 24 parameters used in HMS, three flood events were used to

calibrate and one flood event was used to validate the posterior distributions. Moreover, performance
of seven different likelihood functions (L1–L7) was assessed by means of DREAM(ZS)approach. Four like-
lihood functions, L1–L4, Nash–Sutcliffe (NS) efficiency, Normalized absolute error (NAE), Index of agree-
ment (IOA), and Chiew–McMahon efficiency (CM), is considered as informal, whereas remaining (L5–L7)
is represented in formal category. L5 focuses on the relationship between the traditional least squares
fitting and the Bayesian inference, and L6, is a hetereoscedastic maximum likelihood error (HMLE)
estimator. Finally, in likelihood function L7, serial dependence of residual errors is accounted using a
first-order autoregressive (AR) model of the residuals.
According to the results, sensitivities of the parameters strongly depend on the likelihood function, and

vary for different likelihood functions. Most of the parameters were better defined by formal likelihood
functions L5 and L7 and showed a high sensitivity to model performance. Posterior cumulative distribu-
tions corresponding to the informal likelihood functions L1, L2, L3, L4 and the formal likelihood function
L6 are approximately the same for most of the sub-basins, and these likelihood functions depict almost a
similar effect on sensitivity of parameters. 95% total prediction uncertainty bounds bracketed most of the
observed data. Considering all the statistical indicators and criteria of uncertainty assessment, including
RMSE, KGE, NS, P-factor and R-factor, results showed that DREAM(ZS) algorithm performed better under
formal likelihood functions L5 and L7, but likelihood function L5 may result in biased and unreliable esti-
mation of parameters due to violation of the residualerror assumptions. Thus, likelihood function L7 pro-
vides posterior distribution of model parameters credibly and therefore can be employed for further
applications.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

During the past decades, conceptual rainfall-runoff models have
been extensively used for watershed management policies and
operational and research purposes. Uncertainty in model predic-
tions are caused by the natural randomness, the measurement

errors in input (forcing) and output data, the uncertainty in model
parameters and the model structure (Blasone, 2007; Alazzy et al.,
2015). Hydrologic models often include parameters that cannot
be measured directly, so parameter estimation through calibration
process is prone to error because the data, which were employed
for calibration, generally contain measurement errors (Vrugt
et al., 2003). Therefore, accurate calibration and uncertainty analy-
sis is an important step for these models (Beven, 2006).

In order to estimate predictive uncertainty of the hydrologic
models, infer the parameters, and predict model outputs, various
methodologies may be adopted, including first-order approxima-
tion (Kool and Parker, 1988; Vrugt and Bouten, 2002), state-
space filtering (Salamon and Feyen, 2009; DeChant and
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Moradkhani, 2012; Vrugt et al., 2013), multi model averaging
(Ajami et al., 2007; Vrugt and Robinson, 2007), and various Baye-
sian approaches (Kavetski et al., 2006a,b; Kuczera et al., 2006;
Reichert and Mieleitner, 2009; Renard et al., 2011; Rings et al.,
2012; Vrugt et al., 2008, 2009b).

Among these approaches, Bayesian statistics have been widely
used in hydrology for statistical inference of parameters and model
output prediction (Kuczera and Parent, 1998; Bates and Campbell,
2001; Vrugt et al., 2003; Marshall et al., 2004; Liu and Gupta,
2007). Under Bayes theorem, posterior distribution combines the
data likelihood with the prior distributions of parameters.

In majority of hydrological models, posterior distribution can-
not be estimated by analytical approximation and, hence, simula-
tion methods such as Markov chain Monte Carlo (MCMC)
sampling can be adopted to implement Bayesian approach success-
fully. This method can efficiently estimate posterior probability
density function (pdf) of the parameters.

MCMC methods are stochastic simulation algorithms that suc-
cessively meet the solutions in parameter space, where solutions
finally converge to posterior probability distributions. For any sit-
uation, different approaches of MCMC samplers may be considered
by using suitable sampling or proposed distribution, while the con-
vergence to the target posterior distribution is guaranteed (Vrugt
et al., 2003; Blasone, 2007).

In hydrologic studies, in order to estimate parameter uncer-
tainty of the hydrologic models, a suitable likelihood function
has to be considered which provides reliable parameters of model.
Formal or informal likelihood functions in Bayesian approaches
have been used to estimate parameter uncertainty (Mantovan
and Todini, 2006; Beven et al., 2008; Stedinger et al., 2008;
McMillan and Clark, 2009; Vrugt et al., 2009b; Cheng et al.,
2014). Formal likelihood functions are derived from an assumed
statistical model for the residual errors (Box and Tiao, 1992). For
example, the standard least squares (SLS) approach is used to
derive the formal likelihood function under the assumptions that
error residuals are uncorrelated (independent) and identically dis-
tributed by normal or Gaussian distribution with zero mean and
constant variance (e.g. Vrugt et al., 2009b).

This approach is criticized, as it is highly depended on the
assumptions of the residual error (Beven et al., 2008; Thyer et al.,
2009), while in fact in many cases residual errors are correlated
(dependent), nonstationary (heteroscedasticity), and non-
Gaussian distributed (Kuczera, 1983). Revoking SLS assumptions
may result in biased estimations of the parameters and affect
either parameter or prediction uncertainties.

Informal likelihood functions are subjective likelihood probabil-
ities and are not derived from a known model for the stochastic
error series (Smith et al., 2008). For example Generalized Likeli-
hood Uncertainty Estimation method (GLUE) (Beven and Binley,
1992), presented in the hydrologic literature, is often applied with
a statistically informal likelihood function (Vrugt et al., 2009b). An
informal approach may be used to estimate the uncertainty inter-
val, where traditional error assumptions are violated. But this
approach does not adhere to the formal statistical principles, and
an informal likelihood function is not explicitly linked to an under-
lying error model (Schoups and Vrugt, 2010).

Choosing likelihood function requires a reasonable description
of the distribution of the model errors in order to estimate the
parameters, uncertainties and the statistical inferences accurately
(He et al., 2010). If a likelihood function is arbitrarily applied that
does not reasonably represent the distribution of the model errors,
the results are unreliable.

When the assumptions of the residual error are violated, formal
likelihood function must be applied based on a general error
model. The general error model allows for the model bias and
the correlation; nonstationarity (heteroscedasticity) and the

nonnormality of the model residuals (e.g. Schoups and Vrugt,
2010). In addition, various methods may be used to relax common
assumptions about residual errors, e.g. Box-Cox transformations to
induce homoscedasticity (constant variance) and a first-order
autoregressive (AR-1) scheme of the residuals to remove the tem-
poral autocorrelation (e.g. Sorooshian and Dracup, 1980; Bates and
Campbell, 2001).

Residuals of the rainfall–runoff models are often autocorrelated,
because of the observed data and model structural uncertainties
(Laloy et al., 2010). To account for the correlated errors, one com-
mon applied approach is using a first-order autoregressive (AR)
scheme of the error residuals and considering the effect of model
structural error (Vrugt et al., 2009b).

The hydrological modeling literature has mostly focused on the
effect of choosing a likelihood function on the uncertainty analysis
in the GLUE method and has showed that selection of likelihood
function can directly affect the uncertainty analysis and the sensi-
tivity of parameters (e.g. Freer et al., 1996; Stedinger et al., 2008;
Freni et al., 2009; Alazzy et al., 2015).

Recently, a new Markov chain Monte Carlo (MCMC) sampler,
namely DREAM(ZS) (DiffeRential Evolution Adaptive Metropolis
algorithm), was used under a Bayesian framework as an efficient
and robust sampler. Compared to the generalized likelihood uncer-
tainty estimation (GLUE), the main advantage of DREAM (using
MCMC simulation) is separating the effects of input (forcing),
parameters and model structural uncertainties from total predic-
tive uncertainty (Vrugt et al., 2009b).

DREAM(ZS) is basedon the originalDREAMalgorithm(Vrugt et al.,
2009a) that wasmodified for an efficient estimation of the posterior
probability density function of parameters of a complex hydrologic
model, high-dimensional posterior exploration problems.

Since results which are influenced by different likelihood func-
tions, are important and considerable, this research demonstrates
the importance and impact of choosing likelihood function on
the parameter posterior distributions in a single event based
rainfall-runoff model (HEC-HMS).

So, the influences of four informal likelihood functions and
three formal likelihood functions were evaluated on estimating
the parameters of HEC-HMS under DREAM(ZS) framework.

In this paper, study area is briefly described, and then the
hydrologic model is presented. Afterwards, details of the proce-
dures used to implement DREAM(ZS) method with different likeli-
hood functions in the HEC-HMS hydrologic model are fully
explained. Then the description of criteria is followed which are
used to compare the effects of likelihood functions on the results
of DREAM(ZS) method. Finally, the results and discussion are pre-
sented which are followed by a summary of the most important
conclusions of this study.

2. Materials and methods

2.1. Case study and data

The study area is located in Gorganroud river basin, Golestan
province, Iran, with an area of 3626.5 km2 and is divided into three
sub-basins, Tamar, Tangrah, and Galikesh, with areas of about
1530, 1724 and 372.5 km2, respectively. In the study area, flash
floods occasionally occur which cause some damages to lives, so
flood control management plans are urgent in the basin. Annual
rainfall varies between 200 and 850 mm in the basin (IWRI, 2008).

In the present study, Tamar basin was selected due to the avail-
ability of more reliable data of this basin. This basin is located
between longitudes from 55�30’00” to 56�04’37"E and latitudes
from 37�24’49” to 37�47’48"N (Fig. 1). The elevation of the basin
ranges from 113 m at the basin outlet to about 2160 m at the
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