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a b s t r a c t

Monthly streamflow forecasts are needed to support water resources decision making in the South East of
South Australia, where baseflow represents a significant proportion of the total streamflow and soil mois-
ture and groundwater are important predictors of runoff. To address this requirement, the utility of a
hybrid monthly streamflow forecasting approach is explored, whereby simulated soil moisture from
the GR4J conceptual rainfall-runoff model is used to represent initial catchment conditions in a
Bayesian artificial neural network (ANN) statistical forecasting model. To assess the performance of this
hybrid forecasting method, a comparison is undertaken of the relative performances of the Bayesian ANN,
the GR4J conceptual model and the hybrid streamflow forecasting approach for producing 1-month
ahead streamflow forecasts at three key locations in the South East of South Australia. Particular attention
is paid to the quantification of uncertainty in each of the forecast models and the potential for reducing
forecast uncertainty by using the hybrid approach is considered. Case study results suggest that the
hybrid models developed in this study are able to take advantage of the complementary strengths of both
the ANN models and the GR4J conceptual models. This was particularly the case when forecasting high
flows, where the hybrid models were shown to outperform the two individual modelling approaches
in terms of the accuracy of the median forecasts, as well as reliability and resolution of the forecast dis-
tributions. In addition, the forecast distributions generated by the hybrid models were up to 8 times more
precise than those based on climatology; thus, providing a significant improvement on the information
currently available to decision makers.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Accurate and reliable monthly streamflow forecasts can be
extremely valuable for the proper management and allocation of
water resources, particularly in a highly variable climate where
the historical data alone have limited value in supporting decision
making. This is the case in the South East of South Australia, where
water resources are under pressure from changing land uses, yet
highly variable flow regimes make these resources difficult to pre-
dict and manage. However, the competing environmental and agri-
cultural demands on water resources in this region mean that the
optimal management of flows is needed in order to ensure maxi-
mum benefit is derived from the water that is available (Gibbs
et al., 2014).

In monthly streamflow forecasting, two sources of predictabil-
ity are typically exploited: catchment conditions (wetness) at the

time of the forecast and the effect of climate over the forecast per-
iod (Pokhrel et al., 2013). As discussed in Wang et al. (2009), there
are essentially two distinct approaches for doing this. The first
involves the use of hydrological models that are driven by dynamic
climate forecasts (i.e. forecasts of rainfall and other weather vari-
ables) and represent hydrological processes related to soil water
balance and the evolution of the flow to the outlet of the basin.
The second approach relies on predictors for representing initial
catchment conditions (e.g. antecedent streamflow or soil moisture
data) and climate during the forecast period (e.g. large scale cli-
mate indices or climate model predictions), together with statisti-
cal relationships derived from data that relate these predictors to
upcoming streamflows (Plummer et al., 2009; Robertson and
Wang, 2012). Hydrologic models employed in the former ‘dynam-
ical’ forecasting approach typically operate on a daily or sub-daily
time scale and can range from simple lumped conceptual rainfall–
runoff (R-R) models to more physically-based fully distributed
models. Simple conceptual R-R models have been widely employed
for modelling streamflow in Australia, as they generally provide
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good prediction accuracy, provided good climate data are available,
and have relatively few parameters to calibrate (see Boughton
(2005) for a review of hydrological models used in Australia and
Wang et al. (2011b) for a discussion on the use of such models
for monthly streamflow forecasting). These models attempt to
explicitly simulate the dominant processes occurring within a
hydrological system through the simplified representation of the
system, typically as a series of conceptual water stores with simple
empirical relationships used to describe the recharge and depletion
processes that occur within and between them (Jain and
Srinivasulu, 2006; Kokkonen and Jakeman, 2001). In the ‘statistical’
flow forecasting approach, on the other hand, system response is
characterised primarily through the extraction of information
implicitly contained in a set of observed data (e.g. monthly totals
or averages), without directly taking into account the physical pro-
cesses occurring within the hydrological system (Kokkonen and
Jakeman, 2001; Toth and Brath, 2002).

A perceived advantage of the dynamical forecasting approach,
when compared with statistical streamflow forecasting models, is
that given the physical basis of the hydrological models, they are
able to capture catchment dynamics that predictors used in statis-
tical models cannot (e.g. those related to catchment wetness).
Therefore, they should be more faithful in simulating the rainfall-
runoff process (Chen and Adams, 2006; Robertson et al., 2013).
This is particularly considered to be the case under nonstationary
conditions where ‘past’ predictor–response relationships derived
by statistical models may no longer represent those at the time
of the forecast (Wang et al., 2011a). However, the transformation
of rainfall into runoff is an extremely complex, dynamic, and non-
linear process (Hsu et al., 1995), which can be difficult to fully
understand and represent, particularly by means of a simple, con-
ceptual model. Furthermore, similar to statistical forecasting mod-
els, hydrological models generally require calibration using
historical rainfall and streamflow data. The choice of the calibra-
tion period and its length can have a significant impact on the esti-
mated conceptual model parameters and, hence, the relationships
modelled. In addition, dynamical forecasting models generally
require statistical post-processing to remove systematic biases
and to quantify uncertainty not represented directly by the cali-
brated model (Robertson et al., 2013).

While knowledge-based hydrologic models are important for
understanding hydrological processes, the main concern in many
practical applications of monthly streamflow forecasting models
is the accuracy and reliability of the forecasts; therefore, in such
situations, statistical forecasting may be more suitable. These mod-
els do not require explicit consideration of the processes occurring
within a hydrological system and, therefore, are not limited by an
incomplete or unsuitable description of the complex R-R transfor-
mation processes as simple hydrological models may be. Further-
more, in contrast to conceptual R-R models, which typically
require daily rainfall and potential evapotranspiration (PET) data
as inputs, statistical models are generally not based on a prescribed
(and possibly limited or prohibitive) set of input information, but
rather they are able to take advantage of whatever relevant data
are available. The potential to include auxiliary data, for example,
those related to possible land use and climate impacts, may allow
statistical streamflow forecasting models to characterise changes
in the hydrological behaviour of a catchment that cannot be easily
represented by simple conceptual R-R models (provided data are
available that describe the change in rainfall-runoff relationship;
e.g. data related to changes in land use, extractions or groundwater
levels). Examples of statistical streamflow forecasting approaches
include linear regression and time series models (Garen, 1992;
Pagano et al., 2009; Valipour et al., 2012, 2013), non-parametric fit-
ting (Sharma, 2000), independent component analysis (Westra
et al., 2008), joint probability modelling (Wang et al., 2009) and

artificial intelligence based approaches such as support vector
machines (SVM), fuzzy logic and evolutionary computation based
methods, Wavelet-Artificial Intelligence (W-AI) models and artifi-
cial neural networks (ANNs) (see Yaseen et al. (2015) for a review
of such artificial intelligence based methods).

ANNs are an extremely versatile type of data-driven model that
have become widely adopted for hydrological modelling applica-
tions over the past two decades (see Abrahart et al., 2012; Maier
et al., 2010). An advantage of these models over more traditional
statistical modelling approaches is their flexible model structure,
which enables them to capture arbitrarily complex and nonlinear
input-output relationships from data without any restrictive
assumptions about the functional form of the underlying process.
However, despite their appeal, the performance of an ANN, like
all statistical streamflow forecasting models, is highly dependent
on the availability and quality of observed data. Ideally, to develop
a reliable and robust ANN model, concurrent observations of all
relevant predictors (i.e. those representing catchment wetness
and climate effects) and the streamflow response would be
required, with records sufficiently long to include a wide range
of conditions; while in reality, ANN models usually need to make
do with whatever data are available. For example, antecedent rain-
fall and streamflows are typically used as rather crude proxies for
representing initial catchment wetness in ANNs and other statisti-
cal streamflow forecasting models, due to the limited availability
of soil moisture observations (Robertson et al., 2013). Furthermore,
in comparison with conceptual R-R models, ANNs tend to have
many more parameters requiring calibration and, consequently,
they are more likely to be overparameterised with respect to the
available data. As such, there is a greater risk that ANNs will not
be capable of producing reliable forecasts beyond the range of
the calibration data, unless models are updated as new data
become available (e.g. Bowden et al., 2012).

In order to improve the accuracy and reliability of monthly
streamflow forecasts, it would seem opportune to integrate or
hybridise dynamical and statistical streamflow forecasting models
in some way so as to exploit the strengths and eliminate the weak-
nesses of the respective modelling methodologies, rather than con-
tinuing to choose between the individual techniques and using
them in isolation (Maier et al., 2010; Srinivasulu and Jain, 2009;
Mount et al., 2016). There are a number of ways in which concep-
tual R-R models and ANNs can and have been combined in order to
take advantage of their complementary strengths. These include
the use of ANNs for the statistical post-processing of conceptual
R-R model outputs and their associated uncertainty (Shamseldin
and O’Connor, 2001; Brath et al., 2002; Abebe and Price, 2003;
Anctil et al., 2003; Shrestha et al., 2009); the replacement of runoff
generation and routing algorithms within both lumped and semi-
distributed conceptual R-R models with ANNs (Chen and Adams,
2006; Corzo et al., 2009; Song et al., 2012; Liu et al., 2013;
Loukas and Vasiliades, 2014); and the use of non-standard outputs
from conceptual R-R models to expand the predictor set for ANNs
(see Abrahart et al. (2012) for a more thorough discussion). The lat-
ter approach was taken by Anctil et al. (2004), Srinivasulu and Jain
(2009), Isik et al. (2013) and Noori and Kalin (2016) who incorpo-
rated simulated data including soil moisture, effective rainfall, sur-
face runoff and infiltration depths, baseflow and stormflow
information derived from conceptual models into ANNs used for
forecasting daily river flows. Similarly, Nilsson et al. (2006) used
information about soil moisture and snow accumulation derived
from a conceptual R-R model as auxiliary inputs to an ANN used
for simulating monthly runoff. Recently, Rosenberg et al. (2011)
and Robertson et al. (2013) investigated the benefits of hybrid sea-
sonal forecasting systems where outputs from hydrological models
were used as predictors in a statistical forecasting system
(although not ANN-based). In both cases, it was found that
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