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s u m m a r y

Understanding the hydraulics around injection and production wells in unconfined aquifers associated
with rainwater and reclaimed water aquifer storage schemes is an issue of increasing importance.
Much work has been done previously to understand the mathematics associated with Darcy’s law in this
context. However, groundwater flow velocities around injection and production wells are likely to be suf-
ficiently large such as to induce significant non-Darcy effects. This article presents a mathematical anal-
ysis to look at Forchheimer’s equation in the context of water injection and water production in
unconfined aquifers. Three different approximate solutions are derived using quasi-steady-state assump-
tions and the method of matched asymptotic expansion. The resulting approximate solutions are shown
to be accurate for a wide range of practical scenarios by comparison with a finite difference solution to
the full problem of concern. The approximate solutions have led to an improved understanding
of the flow dynamics. They can also be used as verification tools for future numerical models in this
context.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

With the ever increasing significance of climate change induced
rainfall variability combined with increasing urban populations,
understanding the well hydraulics associated with managed aqui-
fer recharge schemes continues to be an important research topic
for water managers around the world (Bouwer, 2002; Dillon,
2005; Sheng, 2005; Pliakas et al., 2005). Such schemes typically
involve storing rainwater in aquifers during abundant periods
and extracting it when droughts occur (Donovan et al., 2002;
Khan et al., 2008). In some cases, reclaimed wastewater is injected
into aquifers with a view that aquifer storage can provide addi-
tional treatment (Bouwer, 2002; Dillon, 2005) such that, after suf-
ficient time, the water satisfies local drinking water quality
standards (Rygaard et al., 2011).

Appropriate hydraulic models can serve to estimate the condi-
tions under which overflow induced by well recharge might occur
(Sheng, 2005), to estimate the recovery potential of stored water,
to estimate resident times in aquifers for bioremediation capacity,
to forecast negative impacts of recharge on building foundations,

pipelines and deep rooted vegetation and to compute energy
requirements for aquifer recharge recovery schemes.

In most studies of well hydraulics, it is assumed that the flow
behavior can be described by Darcy’s law. By further taking into
account the continuity equation, the water table evolution in
unconfined aquifers can be described by a single non-linear partial
differential equation (PDE), the Boussinesq equation (e.g. Bear,
1979).

Existing analytical solutions of the non-linear Boussinesq equa-
tion for radial, transient, unconfined flow induced by water injec-
tion to an unconfined aquifer are limited to Darcy-flow
conditions and to initially dry aquifer conditions (Yeh and Chang,
2013). Babu and van Genuchten (1980) used similarity transforms
to transform the Boussinesq equation to an ordinary differential
equation (ODE) and then provided an approximate solution using
a perturbation expansion. A similar ODE was derived using similar-
ity transforms by Barenblatt et al. (1990), to which Li et al. (2005)
provided asymptotic solutions for both small and large values of
the similarity variable. Li et al. (2005) combined these expansions
to yield an approximate solution valid for all values of the similar-
ity variable, which they verified by comparison to equivalent
numerical results.

Analytical solutions of the linearized radial or two-dimensional
Boussinesq equation for transient flow induced by water injection
to an unconfined aquifer are more abundant (Hunt, 1971; Marino
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and Yeh, 1972; Rai and Singh, 1995; Manglik et al., 1997; Teloglou
et al., 2008). Both the cases that water is introduced to an aquifer
by an injection well (Marino and Yeh, 1972), or by a recharge basin
(Rai et al., 1998) are examined. A linearization of the Boussinesq

equation either in terms of h, (Rai and Singh, 1995) or in h2, (where
h is the water table elevation relative to the base of the aquifer), is
generally adopted. The resulting linear PDE is solved using the
Laplace transform method, the finite Hankel transform approach
and/or the eigenvalue–eigenfunction method (Marino and Yeh,
1972; Teloglou et al., 2008; Rai et al., 1998). The application range
of the solutions above is limited to the case that the perturbation of
the water table elevation induced by the water recharge is small.

Due to high velocities, inertial non-Darcy flow conditions may
occur in the well vicinity (Mathias and Todman, 2010;
Moutsopoulos et al., 2009). Non-Darcy effects cause additional
head losses, so that for the injection well problem, the rise of head
at the near well field would be higher than predicted by Darcy’s
law. The potential engineering implications of these non-Darcy
effects are increased danger of overflow for water injection and
increased energy consumption for water production.

Semi-analytical solutions for one-dimensional (non-radial)
transient Forcheimer flow in unconfined aquifers have previously
been developed by Bordier and Zimmer (2000) and
Moutsopoulos (2007, 2009). A semi-analytical solution for one-
dimensional steady state radial flow in unconfined aquifers has
previously been presented by Terzidis (2003). However, to better
understand the role of non-Darcy effects during water injection
in unconfined aquifers, we present a series of new approximate
analytical solutions to explore one-dimensional transient radial
Forchheimer flow in unconfined aquifers.

The outline of this article is as follows: The governing equations
for transient one-dimensional radial Forchheimer flow in a
homogenous and isotropic unconfined aquifer are presented. The
equations are normalized using an appropriate set of dimension-
less transformations. Following the ideas of Bordier and Zimmer
(2000) and Sen (1986), two different approximate solutions for
Darcian flow and strongly non-Darcian flow are derived for initial
saturated zones of arbitrary thickness by invoking a quasi-
steady-state assumption. Following Mathias et al. (2008), an
approximate solution for non-Darcy flow in an aquifer with a mod-
erately deep initial saturated zone is derived using the method of
matched asymptotic expansion. The performance of the new
approximate solutions are verified by comparison to a finite differ-
ence solution of the full problem.

2. Governing equations

Consider the injection/production of water into/from a homoge-
nous and isotropic unconfined aquifer. Considering the so-called
Dupuit assumption (that vertical flow is negligible) (Bear, 1979),
an appropriate one-dimensional mass conservation equation can
be written as

Sy
@h
@t

¼ �1
r
@ðrhqÞ
@r

ð1Þ

where (Forchheimer, 1901)

qþ bK
g
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and Sy [–] is the specific yield, h [L] is the water table elevation
above a horizontal impermeable formation, t [T] is time, r [L] is
radial distance from an injection well, b [L�1] is the Forchheimer
coefficient, K [LT�1] is the hydraulic conductivity of the unconfined
aquifer and g [LT�2] is the gravitational acceleration constant.

The relevant initial and boundary conditions can be stated as:

h ¼ hi; r > 0; t ¼ 0
2prhq ¼ cQ0; r ! 0; t > 0
q ¼ 0; r ! 1; t > 0

ð3Þ

where hi [L] is a uniform initial water table elevation, Q0 [L
3T�1] is a

positive valued flow rate associated with a production well or injec-
tion well located at r ¼ 0 with c ¼ 1 for an injection well and c ¼ �1
for a production well.

Note that Eq. (2) can rearranged to the form (Mathias et al.,
2014; Mathias and Wen, 2015)
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3. Dimensionless transformation

It is helpful at this stage to apply the following dimensionless
transformations:

tD ¼ Kt
SyH

; rD ¼ r
H
; hD ¼ h� hi

H
; qD ¼ q

K
; � ¼ hi

H
; b ¼ bK2

g

ð6Þ
where

H ¼ Q0

2pK

� �1=2

ð7Þ

such that the above problem reduces to
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hD ¼ 0; rD > 0; tD ¼ 0
rD hD þ �ð ÞqD ¼ c; rD ! 0; tD > 0
qD ¼ 0; rD ! 1; tD > 0

ð11Þ

Note that it is also possible to state that

qD þ bjqDjqD ¼ � @hD

@rD
ð12Þ

4. Analytical solution for large � and zero b

The case of very large � corresponds to the case of very large
values of the initial water table elevation or very small values of
the flow-rate, such that either the raise in water table elevation
induced by water injection or the drawdown induced by water
extraction can be assumed negligible. In this way, the cross-
sectional area, through which groundwater flow takes place, can
be assumed uniform and constant, such that flow processes can
be described by the same equations ordinarily used to describe
confined aquifers. The case of zero b corresponds to a problem
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