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s u m m a r y

Catchment regionalization is an important step in estimating hydrologic parameters of ungaged basins.
This paper proposes a multiscale entropy method using wavelet transform and k-means based hybrid
approach for clustering of hydrologic catchments. Multi-resolution wavelet transform of a time series
reveals structure, which is often obscured in streamflow records, by permitting gross and fine features
of a signal to be separated. Wavelet-based Multiscale Entropy (WME) is a measure of randomness of
the given time series at different timescales. In this study, streamflow records observed during 1951–
2002 at 530 selected catchments throughout the United States are used to test the proposed regionaliza-
tion framework. Further, based on the pattern of entropy across multiple scales, each cluster is given an
entropy signature that provides an approximation of the entropy pattern of the streamflow data in each
cluster. The tests for homogeneity reveals that the proposed approach works very well in regionalization.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Estimates of streamflow are a prerequisite for solving a number
of engineering and environmental problems. These include design
or dimensioning a water control structure, economic evaluation of
flood protection projects, land use planning and management,
water quality control, and stream habitat assessment, among
others. When the availability of streamflow records is limited at
the site of interest, it is a common practice to apply regionalization
techniques to derive the streamflow quantile estimates at the sites
where records are limited or in ungaged catchments (Kokkonen
et al., 2003). Regionalization can be defined as the transfer of infor-
mation from one catchment to another (Blöschl and Sivapalan,
1995). This information may comprise characteristics describing
hydrologic data or models. To have greater confidence in extrapo-
lating hydrologic behavior from catchments with flow records to
an ungaged catchment, all these catchments should form a
relatively homogeneous group (Pilgrim et al., 1988; Nathan and

McMahon, 1990; Post and Jakeman, 1999). The homogeneity is
not only in terms of geographic contiguity but also in terms of
hydrologic similarity.

Some of the common approaches for regionalization in hydrol-
ogy include: the method of residuals (MOR) (Choquette, 1988), the
region of influence (ROI) approach (Zrinji and Burn, 1994, 1996),
principal component analysis (PCA) (Singh et al., 1996), and cluster
analysis and its extensions (Rao and Srinivas, 2006a,b; Isik and
Singh, 2008; Srinivas et al., 2008; Satyanarayana and Srinivas,
2011); see also Razavi and Coulibaly (2013) for a review of region-
alization methods for streamflow prediction in ungaged basins,
and Sivakumar et al. (2015) for a comprehensive account of catch-
ment classification more broadly. Nathan and McMahon (1990)
used a combination of multiple regression, cluster analysis, princi-
pal component analysis, and graphical representation of eighteen
physical catchment variables for predicting the low-flow charac-
teristics of 184 catchments in south-eastern Australia. Notwith-
standing their ability to provide reasonable outcomes, these
approaches have an important disadvantage in that they mainly
rely on the pre-conceived notion of the factors that are thought
to influence the behavior of the streamflow from a catchment
and that these factors are measurable (Zoppou et al., 2002). In real-
ity, however, the streamflow is a resultant of integrated effects of
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many factors, such as topography, lithology, climate, and many
others (Yadav et al., 2007), which are occurring at a whole range
of time (and space) scales. Therefore, it would be more appropriate
to analyze the streamflow across different scales and group the
catchments using their signatures.

In recent years, wavelet analysis has become a common tool for
analyzing the highly irregular, complex, and intermittent time ser-
ies often encountered in geophysics (Torrence and Compo, 1998;
Smith et al., 1998; Labat et al., 2000; Labat, 2005, 2008; Özger
et al., 2010, 2011; Niu, 2013; Niu and Sivakumar, 2013; Chen
et al., 2014; Niu et al., 2014; Sehgal et al., 2014a,b; Shoaib et al.,
2014, 2015). Several studies have also combined the wavelet
transform with other methods to improve our ability to capture
the features of geophysical signals (e.g. Adamowski and Sun,
2010; Nourani et al., 2009, 2012). In wavelet transform, by decom-
posing a time series into time–frequency space, it is possible to
determine both the dominant modes of variability and how those
modes vary in time. Hence, wavelet transform proves to be a useful
tool for analyzing localized variations of power within a time ser-
ies. Many studies have demonstrated the utility of wavelet analysis
in regionalization. For example, Saco and Kumar (2000) used
wavelets with rotated principal component analysis of the wavelet
spectra, to cluster streamflow stations in the United States. A sim-
ilar approach using k-means clustering was adopted by Zoppou
et al. (2002) to regionalize 286 catchments throughout Australia.
They used the wavelet power spectra as the characterizing variable
for the cluster analysis and the linear Pearson’s correlation coeffi-
cient for measuring the degree of similarity between the clusters.
The results revealed the capability of wavelets in quantifying the
temporal variability of streamflow and, thereby, aiding in regional-
ization of different catchments.

Even though the wavelet power spectrum has successfully been
used for capturing the streamflow behavior, it becomes difficult to
use the wavelet spectrum in case of limited data or incomplete
data (Yiou et al., 2000). For instance, while the global power spec-
trum (see below for details) provides the variability of power
across different scales, it does not provide any information about
the characteristics of the features at a given scale. Therefore, use
of the global power spectrum alone does not allow one to infer
information about some important features of the signals, such
as intermittency, and time variability. However, entropy provides
information about the uncertainty at a given scale, which can be
corroborated to the level of variation present at that scale. Further,
entropy enables determination of least-biased probability distribu-
tion with limited signal knowledge and data. Entropy theory can
serve as a better approach to study hydrologic and meteorologic
processes (Singh, 1997). Numerous studies have used the entropy
concept to study a wide variety of problems in hydrology and
water resources. Singh and Rajagopal (1987) presented new per-
spectives for potential applications of entropy theory in water
resources. A historical perspective on entropy applications in water
resources was presented by Singh and Fiorentino (1992).
Harmancioglu and Alpaslan (1992) discussed the use of entropy
in water resources, especially for the design and evaluation of
water quality monitoring network design. Comprehensive reviews
of the applications of entropy theory in hydrology and water
resources are available in Singh (1997, 2011), among others.

The concept of entropy, when applied in conjunction with
wavelet analysis, can be used to determine the randomness (i.e.
level of uncertainty) of a time series at different timescales. At a
given scale, maximum entropy is possible when the information
is evenly spread across time, and minimum entropy occurs when
all the information is contained in a single location. The Wavelet-
based Multiscale Entropy (WME), which is a measure of the degree
of order/disorder of the signal and carries information associated
with multi-frequency signal, can provide useful information about

the underlying dynamic processes associated with the signal and
can help in regionalization studies (Cazelles et al., 2008). This pro-
vides the motivation for the present study to develop a robust
regionalization tool based onWME. In this study, theWMEmethod
is applied to monthly streamflow data observed at 530 stations in
the contiguous United States. Continuous Wavelet Transform
(CWT) is applied to each of the observed streamflow time series
using the Morlet wavelet to capture the temporal multiscale vari-
ability of the streamflow in the form of wavelet coefficients. These
wavelet coefficients for each scale are utilized to obtain the
entropy for the respective scales. The spectral organization of this
multi-spectral variability in terms of WME is identified using
k-means clustering.

The rest of the paper is organized as follows. Section 2 describes
the proposed methodology with description of the wavelet
transform, WME, and k-means clustering technique. Details of
the study area and dataset are presented in Section 3. Section 4
presents the application of the proposed methodology to stream-
flow data, followed by a discussion of the results. Finally, Section 5
presents some of the important conclusions and scope for further
research.

2. Methodology

2.1. Wavelet transform

The Continuous Wavelet Transform (CWT) Wn of a discrete
sequence of observations xn is defined as the convolution of xn with
a scaled and translated wavelet WðnÞ that depends on a non-
dimensional time parameter g with zero mean and localized in
both frequency and time (Farge, 1992; Torrence and Compo,
1998), and is written as:

WnðsÞ ¼
XN�1

n0¼0

xn0 w
� ðn� n0Þdt

s

� �
ð1Þ

where n is the localized time index, n0 is the time variable, s is the
wavelet scale, dt is the sampling period, N is the number of points
in the time series, and the asterisk (⁄) indicates the complex conju-
gate. By varying the wavelet scale s and translating along the local-
ized time index n, one can construct a picture showing both, i.e.
amplitude of any features versus the scale and how this amplitude
varies with time. The choice of the wavelet function WðnÞ is neither
unique nor arbitrary. The mother wavelet function may be chosen
from one of several functions having certain admissibility require-
ments. Maheswaran and Khosa (2012) provided detailed guidelines
for selecting the mother wavelet function. Since the definition of
multi-scale entropies is based on the distribution of the activity in
the time–frequency domain, a high degree of time–frequency local-
ization allows an accurate measure of entropy. In this study, the
Morlet wavelet function is used because of its better time–fre-
quency localization when compared to the other commonly used
wavelets, such as the Mexican Hat and the Daubechies wavelets;
see Addison (2002) and Maheswaran and Khosa (2012) for some
details.

Generally, the result of the wavelet transform is displayed by
plotting the amplitude of the wavelet coefficients (jWnðsÞj)
obtained (Farge, 1992; Meyers et al., 1993). However, the short-
coming of this method is that it is not directly comparable with
Fourier spectrum. To resolve this limitation and for direct compar-

ison of spectra, the amplitude squared spectrum, jWnðsÞj2, i.e.
wavelet power spectrum, can be used, as is done in the present
study.
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