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In this study, we develop a new method for a Bayesian change point analysis. The proposed method
is easy to implement and can be extended to a wide class of distributions. Using a generalized
extreme-value distribution, we investigate the annual maximum of precipitations observed at stations
in the South Korean Peninsula, and find significant changes in the considered sites. We evaluate the
hydrological risk in predictions using the estimated return levels. In addition, we explain that the
misspecification of the probability model can lead to a bias in the number of change points and using
a simple example, show that this problem is difficult to avoid by technical data transformation.
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1. Introduction

Non-stationarity in the hydrological processes has received
much attention since (Wigley, 1985), who referred the importance
of capturing non-stationarity in prediction. Using a simple exam-
ple, he showed that ignoring non-stationarity in the probability
model can lead to severe biases in high quantiles. His results
provoked several studies on non-stationary models using extreme
data in hydrology and climatology. To this effect, the Bayesian
change point (BCP) analysis is one of the most popular research
topics in the field.

In hydrology, Perreault et al. (2000a,b,c) studied a BCP model
under a (multivariate) normal distribution. Rasmussen (2001)
constructed a Bayesian regression model with abrupt changes in
the intercept and slope parameters and (Seidou et al., 2007) gener-
alized the works of Perreault et al. (2000c) and Rasmussen (2001).
Kim et al. (2009) investigated the change points of the annual max-
imum precipitation across South Korean Peninsula. They used
regional averages of annual maximum precipitations across multi-
ple sites in South Korea, and assumed the normal distribution of
the regional averages.

In climatology, Chu and Zhao (2004) proposed a BCP model to
detect a single mean change in the Poisson distribution. The
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proposed method is based on Bayesian hypothesis testing, which
compares the model evidences between a single change and no
change. They analyzed frequency of annual occurrences of a trop-
ical cyclone and showed significant evidences of existence of
change points in the mean of the distribution. Zhao and Chu
(2006) extended the Bayesian model to detect multiple change
points in the occurrences of hurricane activities. Their model is also
based on the Bayesian hypothesis testing in which hypotheses are
predetermined. Tu et al. (2009) applied the Bayesian model to ana-
lyze the occurrences of typhoons, heavy rainfall, and heat waves.

The Bayesian model provides statistical evidence that supports
the non-stationarity of the climatological or hydrological processes
and offers decision tools for forecasting. However, to the best of
our knowledge, most of studies that adopt the BCP model assume
distributions in the exponential family as a probability model of
observations. Moreover, they are largely based on Bayesian
hypothesis testing which is computationally intensive and
restricted to models with a pre-determined number of change
points. To overcome these weakness (Zhao and Chu, 2010) intro-
duced a prior distribution of the number of change points in the
Bayesian model. They applied the reversible jump Markov chain
Monte Carlo (RIMCMC) (Green, 1995), which is widely used to con-
trol the number of mixture components.

As an alternative to the BCP model (Zhao and Chu, 2010), we
propose a new model with a spike and slab prior distribution of
regression parameters. In this study, a generalized extreme value
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(GEV) distribution is considered as the probability model of the
observations; however, the probability distribution of the model
can be extended to a sufficiently large class of useful distributions.
By estimating differences in the mean parameters, we detect the
change points of parameters in a time domain.

The remainder of this paper is organized as follows. In Section 2,
we briefly review the recent literature on change-point analyses,
and explain theoretical connections between our research and
the developed models. In Section 3, we propose the new Bayesian
method using spike and slap prior. This section also explains the
way implementation of the MCMC algorithm using OpenBUGS
with an underlying GEV distribution. In Section 4, we conduct a
numerical analysis of annual maximum of precipitation in the
South Korean Peninsula. In Section 5, we provide concluding
remarks.

2. Background of change point analysis

This section discusses the recent literature on change-point
analyses and shows the relationship between existing studies
and the present one. There are two major approaches to analyze
extreme events using a non-stationary distribution. First is to find
gradual varying changes and second is to detect abrupt changes in
the stochastic quantities. The first approach originates from a gen-
eralized linear model, which is a regression model for distributions
in the exponential family. In particular, when the assumption of
the underlying probability model is a GEV distribution, the station-
ary model can be easily extended to a non-stationary model,
reflecting changes in the mean trend and variance by introducing
time-dependent parameters (Coles et al., 2001). The second
approach is from the cUSUM test (Page, 1954), which provides sta-
tistical decisions about mean changes in production processes. The
statistical evidence for the existence of a mean change is evaluated
using the test statistics from the CUSUM test and a new estimation
is conducted accounting for the estimated change points.

The regularizing method of the regression model has method-
ologically bridged two different approaches. The new method
serves as a tool to detect one or multiple change points using a
fused lasso (Tibshirani et al., 2005). The fused lasso method shrinks
the differences between the adjacent estimated parameters in a
time domain, such that the estimators are regularized along the
direction of parameter averages. Using the fused penalty function,
identical estimated coefficients for a neighborhood are obtained.
Thus, the fused lasso provides estimators with consecutive homo-
geneous groups of mean parameters, which contain information
about the change points. The primary advantage in using a fused
lasso is its flexibility or easy extension to other probability models
that detect change points. By replacing the loss function used in
the fused lasso, various models that capture change points can
be developed.

In Bayesian statistics, the regularizing method affects the devel-
opment of new prior distributions. For a linear regression, Park and
Casella (2008) and Hans (2009) explained lasso Tibshirani (1996),
one of the most popular regularization methods, as a maximum a
posteriori (MAP) estimate with independent Laplace priors for
regression coefficients from a Bayesian perspective. Using a new
class of prior distributions, Kyung et al. (2010) explain the group
lasso, fused lasso, and elastic net, which are generalizations of
the lasso within the framework of hierarchical Bayesian models.
The family of prior distributions is motivated by the regularization
method and is called the shrinkage priors, which include the
Laplace (double exponential) distribution, Student’s
t-distribution, generalized double Pareto distribution, and
horseshoe-type priors distribution (Bae and Mallick, 2004;
Johnstone and Silverman, 2004; Carvalho et al., 2010; Armagan

et al., 2013). The shrinkage priors provide the Bayesian models
with a useful framework to achieve variable selections in the
regression model.

Corresponding to the variable selection problem in the Bayesian
regression model, Armagan et al. (2013) and Castillo et al. (2015)
proposed a more elaborated model that uses a mixture of continu-
ous shrinkage priors and discrete distributions. Generally, with
conventional prior distributions in a regression model, it is difficult
to explain variable selections using the obtained posterior distribu-
tion. However, using the mixture distribution, the theoretical foun-
dation of the variable selection in the Bayesian regression model is
constructed and the selection appears to perform well. The pro-
posed model is motivated by the extension of the fused lasso
(Tibshirani et al., 2005) to a Bayesian model using this mixture
prior distribution. We define change point by time with non-zero
differences in the adjacent parameters and assume spike and slab
prior distributions (Ishwaran and Rao, 2005) of the differences in
parameters. The spike and slab prior distribution is a type of selec-
tion prior distribution, which is a mixture of distributions with a
point mass at zero and a Laplace distribution. The proposed model
provides an estimation result for the abrupt change in stochastic
quantities, which does not follow the normal distribution if the
appropriate likelihood function is defined. In addition, the imple-
mentation is rather simple, since the 0OpenBUGS (http://www.
openbugs.net/w/FrontPage), which is the most popular program
used in a Bayesian analysis, supports the proposed model’s MCMC
method.

3. Bayesian change point model
3.1. Likelihood

A Generalized extreme value (GEV) distribution is defined by a
limiting distribution of block-wise maxima of identical and
independent random quantities. A GEV distribution has three
parameters corresponding to the location (u), scale (o), and shape
(&) of its probability density function. The cumulative distribution
function is given by
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where u € R is the location parameter, ¢ > 0 is the scale parameter,
and ¢ is the real valued shape parameter. The sign of ¢ determines
the support of the distribution. If ¢ > 0, the support of the distribu-
tion is bounded below u — o/¢; if ¢ <0, the support is bounded
above by u — g/¢& The kth moment of the distribution exists only
for ¢ <1/k, and the variance and skewness are defined for
¢ < 1/3. As long as variance and skewness exist, they do not depend
on u. On the other hand, the o-quantile and the mean of the distri-
bution are affine functions of pu. Thus, a GEV distribution with a
changing mean/median can be constructed using the location
parameter depending on time. Let y, ~GEV(u,0,¢) for
t=1,...,n, then the a-quantile of y, is given by
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and the mean of y, is given by
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The conditional likelihood of
n= (..., ), o,and ¢ is written as

y=01,---,Ya) given
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