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This study develops a general analytical model for describing transient drawdown distribution induced
by pumping at a finite-radius well in a radial two-zone confined aquifer of finite areal extent with
Robin-type condition at both inner and outer boundaries. This model is also applicable to heat conduction
problems for a composite hollow cylinder on the basis of the analogy between heat flow and groundwater
flow. The time-domain solution of the model is derived by the methods of Laplace transform, Bromwich
integral, and residue theorem. This new solution can reduce to the solution for constant-head test (CHT)
or constant-rate test (CRT) problem by specifying appropriate coefficients at the Robin inner boundary
condition. The solution describing the flow rate across the wellbore due to CHT is further developed
by applying Darcy’s law to the new solution. In addition, steady-state solutions for both CHT and CRT
are also developed based on the approximation for Bessel functions with very small argument values.
Many existing solutions for transient flow in homogeneous or two-zone finite aquifers with Dirichlet
or no-flow condition at the outer boundary are shown to be special cases of the present solution.
Furthermore, the sensitivity analysis is also performed to investigate the behaviors of the wellbore flow
due to CHT and the aquifer drawdown induced by CRT in response to the change in each of aquifer
parameters.
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roleum engineering area, van Everdingen and Hurst (1949) devel-
oped analytical solutions for flow problems with considering

1. Introduction

Aquifer tests such as constant-head test (CHT) and constant-
rate test (CRT) are commonly performed for the determination of
aquifer parameters (i.e., transmissivity and storage coefficient) in
engineering applications. The former is carried out by maintaining
a constant water level in a well and measuring flow rate across the
wellbore. The latter needs to maintain a constant-flux rate at the
pumping well and measures the temporal change of the drawdown
at the observation well. The aquifer parameters can then be deter-
mined by the least-squares or graphical approaches with the mea-
sured data.

A variety of studies describing the transient drawdown behav-
ior of CHT in confined homogeneous aquifers under various well
and aquifer configurations has been reported in the past. Muskat
(1946) presented two mathematical models for describing well
pumping at a uniform rate and a constant pressure in a closed
gas reservoir with no-flow condition at the outer boundary. In pet-
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both constant-pressure and constant-rate cases in reservoirs with
zero pressure drop at the remote boundary for both finite and infi-
nite boundary systems. Jacob and Lohman (1952), based on the
solution of Smith (1937) for heat conduction problem, showed a
formula describing wellbore flow rate induced by constant draw-
down in a confined infinite aquifer by specifying an initial head
at the outer boundary. Later, Carslaw and Jaeger (1959) presented
mathematical models for both constant temperature and constant
heat flux as inner boundary condition (BC) for heat flow problems
with zero initial temperature over the entire infinite medium.
Their solutions can be adopted as head solutions for CHT and
CRT in a confined aquifer on the basis of analogy between ground-
water flow and heat conduction. In addition, they also provided
temperature distribution solution for a hollow cylinder with the
Robin conditions at both the inner and outer boundaries
(Carslaw and Jaeger, 1959, p. 332). Mishra and Guyonnet (1992)
adopted the Boltzmann transformation technique to develop
approximate solutions for drawdown and wellbore flow-rate solu-
tions for homogeneous aquifers. Markle et al. (1995) developed a
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Nomenclature

Jo(u),Yo(u) Bessel function of the first and second kinds of order

Zero

J;(u),Y;(u) Bessel function of the first and second kinds of order

one

Io(u),Ko(u) modified Bessel function of the first and second kinds

of order zero

I1(u),Kq(u) modified bessel function of the first and second kinds

of order one
output parameter of the aquifer
input parameter of the aquifer
flow rate into or out wellbore
dimensionless flow rate in Laplace domain
flow rate in Laplace domain
radial distance from the center of well to remote bound-
ary
storage coefficient
transmissivity
normalized sensitivity
thickness of aquifer
thickness of streambed
sy for CHT and Q/(4nT,) for CRT
coefficients of inner and outer BCs
permeability of streambed
Laplace variable
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= \/—
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