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Because of groundwater conceptualization uncertainty, multi-model methods are usually used and the
corresponding uncertainties are estimated by integrating Markov Chain Monte Carlo (MCMC) and
Bayesian model averaging (BMA) methods. Generally, the variance method is used to measure the uncer-
tainties of BMA prediction. The total variance of ensemble prediction is decomposed into within-model
and between-model variances, which represent the uncertainties derived from parameter and conceptual
model, respectively. However, the uncertainty of a probability distribution couldn’t be comprehensively
quantified by variance solely. A new measuring method based on information entropy theory is proposed

Editor in this study. Due to actual BMA process hard to meet the ideal mutually exclusive collectively exhaustive
condition, BMA predictive uncertainty could be decomposed into parameter, conceptual model, and over-
Keywords: lapped uncertainties, respectively. Overlapped uncertainty is induced by the combination of predictions

from correlated model structures. In this paper, five simple analytical functions are firstly used to illus-
trate the feasibility of the variance and information entropy methods. A discrete distribution example
shows that information entropy could be more appropriate to describe between-model uncertainty than
variance. Two continuous distribution examples show that the two methods are consistent in measuring
normal distribution, and information entropy is more appropriate to describe bimodal distribution than
variance. The two examples of BMA uncertainty decomposition demonstrate that the two methods are
relatively consistent in assessing the uncertainty of unimodal BMA prediction. Information entropy is
more informative in describing the uncertainty decomposition of bimodal BMA prediction. Then, based
on a synthetical groundwater model, the variance and information entropy methods are used to assess
the BMA uncertainty of groundwater modeling. The uncertainty assessments of groundwater BMA pre-
diction are consistent with that of analytical function examples.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, a number of multi-model methods have been
proposed to account for uncertainties arising from input parameter
and the definition of model structure (Ajami et al., 2007; Neuman,
2003; Neuman et al., 2012; Poeter and Anderson, 2005; Rojas et al.,
2008; Ye et al., 2010). These methods believe that it is more appro-
priate to consider multi-model predictive uncertainty than relying
on a single conceptual model. In addition, the Bayesian model
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averaging (BMA) (Draper, 1995; Hoeting et al., 1999) provides an
effective framework for integrating the results of proposed concep-
tual models. BMA is superior to other methods in incorporating
previous information, and quantifying the uncertainties of model
parameter and structure independently (Diks and Vrugt, 2010;
Rojas et al., 2008; Singh et al., 2010).

Generally, the concept of uncertainty means the lack of cer-
tainty. Due to limited knowledge to specify a state, it is impossible
to exactly describe the state or future outcome, and there is more
than one possibility (Retzer et al., 2009). As for the theme of uncer-
tainty analysis, the most fundamental questions should be the def-
inition of uncertainty, as well as the measurement of the
composition, propagation, and interaction of uncertainties. How-
ever, currently, there is not a universal framework for uncertainty
measurement and assessment.
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In present researches on the assessment of groundwater model-
ing uncertainty, in general, variance is defined as the measurement
of uncertainty (Neuman and Wierenga, 2003; Refsgaard et al.,
2006; Rojas et al., 2008; Troldborg et al., 2010; Ye et al., 2010).
Variance measures how far a set of numbers is spread out. A small
variance indicates that the data points tend to be very close to the
mean (expected value) and hence to each other. For the variance
measuring method, the total variance of BMA predictive distribu-
tion is decomposed into two parts which include within-model
and between-model variances (Draper, 1995; Hoeting et al.,
1999). Correspondingly, the two terms represent the uncertainties
derived from model parameter and conceptual model, respectively.
However, the uncertainty of a probability distribution could be
more meaningful than variance measurement solely.

As mentioned by Ebrahimi et al. (2010), Khinchin (1957), Rényi
(1961), Shannon (1948), that a qualified uncertainty function U(f)
(where f denotes a variable’s probability distribution, f=f{fi,
for. .., fa), nis the number of variable’s possibility) should meet sev-
eral basic properties. These properties include: (1) continuity, U(f)
is continuous to f. (2) symmetry, U(f) is invariant with the order of
variable’s states. (3) monotonicity, U(f) is a monotonically increas-
ing with n when f; equals to 1/n. (4) partition invariance, U(f) is
invariant when the variable’s space is partitioned into subsets. In
addition, the above properties are referred as Shannon’s axioms
(Shannon, 1948). Two important inferences are derived to ensure
that U(f) satisfies with Shannon’s axioms and obtains unique solu-
tion. Ebrahimi et al. (2010) summarized them as (1) U(f) is a con-
cave function of f. (2) the maximum uncertainty is attained when
fis a uniform distribution.

Variance is a concave function. However, the second inference
of Shannon’s axioms is not satisfied by variance function. Variance
is conditionally able to measure the characteristics of a probability
distribution, e.g., normal distribution. Ebrahimi et al. (2010) pro-
vided some examples for comparing the variance and uncertainty
degree of probability distributions. For example, the exponential
and gamma distributions (E(1.0) and G(1.0, 1.41)) which have the
same variance but exhibit different levels of concentration degrees.
The beta distribution B(0.5, 0.5) displays a larger concentration
degree than the uniform distribution U(0.0, 1.0), although the for-
mer has a larger variance. Moreover, the variance of a multivariate
probability distribution is extended to a covariance matrix which
cannot be represented uniquely as a statistic of f (Ebrahimi et al.,
2010). Therefore, variance maybe not a perfect uncertainty func-
tions for measuring a probability distribution, e.g. groundwater
predictions.

In information theory, the information entropy is defined as the
measurement of degree of uncertainty. The uncertainty of a ran-
dom variable is defined as the amount of information used to
describe this variable. The more information required to describe
this variable, the more uncertain this variable is (Ebrahimi et al.,
2010). In addition, information entropy theory satisfies all the
derived properties of U(f) and Shannon’s axioms. This method is
applicable to any type of probability distribution, e.g., non-
normal distribution. In addition, information entropy is feasible
for multivariate situation, and it is invariant under the one-to-
one transformations of variables (Ebrahimi et al., 2010; Retzer
et al., 2009), such as unit transformation. Through two ecological
models describing the uncertainty of resource availability for an
organism, Smaldino (2013) demonstrated that variance is good at
measuring the uncertainty of a small number of discrete samples,
but information entropy is a better measure for multimodal or dis-
continuous distribution. For complicated groundwater system, the
research variables’ probability distributions are not necessary to be
normal distributions, especially for BMA prediction (Raftery et al.,
2005; Rojas et al., 2010). Thus, information entropy method has
potential excellent properties for describing BMA uncertainties.

Ideally, the foundational BMA working principle is building
mutually exclusive collectively exhaustive (MECE) conceptual
models (Refsgaard et al., 2012). In fact, MECE is a rather intractable
problem for groundwater modeling. For example, under compli-
cated geological conditions, the uncertainty components (used to
build alternative conceptual models) could be not fully indepen-
dent. For saving computing resource, hydrogeologists always use
a few of plausible conceptual models to represent unknown
groundwater filed in BMA (Poeter and Anderson, 2005; Rojas
et al., 2010). Thus, according to the logical process of BMA, the pre-
dictive uncertainty could be induced from three steps that include
(1) the selection of model structure, (2) the setting of model
parameters and boundary conditions for each conceptual model,
and (3) the operation of multi-model averaging. Correspondingly,
three uncertainties are produced at these three steps, and they
are model selection uncertainty, the parameter uncertainty of each
conceptual model, and the overlapped uncertainty caused by the
combination of correlated predictions. For a specified model, the
predictive uncertainty is only induced from model parameters.
For building alternative conceptual models, the uncertainty com-
ponents of groundwater model could be correlated in practice,
e.g. the recharge scenarios and the description of hydraulic con-
ductivity field. The proposed conceptual models may be con-
structed by partially similar model structures, and then produce
correlated predictions. Thus, BMA within-model uncertainty
should be the weighted sum of parameter uncertainties over all
conceptual models minus the overlapped uncertainty among cor-
related predictions. Overlapped uncertainty will be zero when
alternative model structures are fully independent.

For variance method, the overlapped uncertainty among con-
ceptual models’ predictions cannot be appropriately represented
by its decomposition formula. By contrast, information entropy
method can obtain more information on the composition of BMA
uncertainty, as shown below. Furthermore, information entropy
theory have been widely used for the related researches of ground-
water modeling uncertainties, e.g., the sensitivity analysis by
mutual entropy (Mishra et al., 2009), the identification of ground-
water contaminant release by relative entropy (Woodbury and
Ulrych, 1996), the prediction of a spatial random field by principle
of maximum entropy (Orton and Lark, 2009), the description of
epistemic and aleatory uncertainties of hydrologic modeling
(Gong et al., 2013), and describing the evolution of groundwater
flow system by field entropy (Xu and Du, 2014).

Variance and information entropy methods represent different
research ideas for uncertainty analysis. Variance concerns how
far a set of samples are spread out with their mean value. Informa-
tion entropy concerns the probabilities of samples. “Uncertainty” is
still an open concept, and it has different definitions and interpre-
tations in different fields. The result of information entropy
method can be regarded as a supplement to the variance method.
The purpose of this paper is not to justify which method is more
valid for measuring the uncertainty of a random variable, but to
explore the feasibility of two uncertainty measurement methods
for various probability distributions, such as the predictions from
single conceptual model and BMA. It could provide some insights
into the assessment of conceptual model uncertainty. However,
to the best of our knowledge, information entropy is rarely applied
to the uncertainty assessment of BMA of groundwater modeling. In
this paper, information entropy and variance methods will be used
to assess the uncertainties of analytical functions and groundwater
modeling, and the results of these two methods are compared and
summarized.

The remainder of this paper is organized as follows. In Section 2,
we provide a condensed description of the methods for integrated
uncertainty assessment. Section 3 illustrates the application of
variance and information entropy methods through 5 analytical
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