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s u m m a r y

In this paper, we develop a finite analytic method (FAMM), which combines flexibility of numerical
methods and advantages of analytical solutions, to solve the mixed-form Richards’ equation. This new
approach minimizes mass balance errors and truncation errors associated with most numerical
approaches. We use numerical experiments to demonstrate that FAMM can obtain more accurate
numerical solutions and control the global mass balance better than modified Picard finite difference
method (MPFD) as compared with analytical solutions. In addition, FAMM is superior to the finite ana-
lytic method based on head-based Richards’ equation (FAMH). Besides, FAMM solutions are compared
to analytical solutions for wetting and drying processes in Brindabella Silty Clay Loam and Yolo Light
Clay soils. Finally, we demonstrate that FAMM yields comparable results with those from MPFD and
Hydrus-1D for simulating infiltration into other different soils under wet and dry conditions. These
numerical experiments further confirm the fact that as long as a hydraulic constitutive model captures
general behaviors of other models, it can be used to yield flow fields comparable to those based on other
models.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Understanding of groundwater recharge, evaporation, and the
mechanisms controlling movement of moisture and pollutants in
the vadose zone to groundwater reservoirs are of great importance
in environmental and agricultural engineering fields (Jing et al.,
2014; Wang et al., 2011, 2014; Wang et al., 2016). Quantitative
investigations of these processes and mechanisms often rely on
Richards’ equation. Because Richards’ equation is nonlinear, ana-
lytical solutions are tractable only under special cases. Therefore,
numerical models are deemed to be more appropriate tools for
dealing with any realistic field problems. According to the types
of variables used, Richards’ equation generally can be classified
into three types: water content (h)-based form, pressure head
(h)-based form, and a mixed form. Crevoisier et al. (2009) reported
that different forms of Richards’ equation could have significantly
influenced computational efficiency, accuracy and behavior of the

solutions. The h-based Richards’ equation is more versatile because
it can be applied to variably saturated flow in heterogeneous media
(e.g., Brunone et al., 2003, and Mao et al., 2011; Yeh et al., 2015a).
However, Milly (1985) and Celia et al. (1990) reported that the
h-based Richards’ equation is difficult to solve using numerical
approaches. Numerical solutions to this equation may yield results
involving large mass balance errors, unless small grids and fine
time steps are employed. In order to avoid these problems, many
researchers have suggested that the mixed-form Richards’
equation, which can maintain the conservative property with less
computational efforts, should be adopted to simulate water flow
in unsaturated zone (Allen and Murphy, 1986; Celia et al., 1987,
1990).

Celia et al. (1990) developed a modified Picard finite difference
(MPFD) method for the mixed-form Richards’ equation and
showed that it yielded robust and reliable numerical solutions
for unsaturated flow problems. They stated that the mixed-form
equation combines advantages in the h-based and the h-based
equations while circumventing difficulties associated with each
one. Their numerical solutions to the mixed-form Richards’ equa-
tion, nevertheless, are subject to truncation error as the most
numerical approaches.
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Abbreviations: FAMM, finite analytic method based on mixed-form Richards’
equation; MPFD, modified Picard finite difference approximation; FAMH, finite
analytic method based on head-based Richards’ equation.
⇑ Corresponding author. Tel.: +86 29 82339291.

E-mail addresses: wenkew@chd.edu.cn, wenkew@gmail.com (W. Wang).

Journal of Hydrology 537 (2016) 146–156

Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/locate / jhydrol

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2016.03.035&domain=pdf
http://dx.doi.org/10.1016/j.jhydrol.2016.03.035
mailto:wenkew@chd.edu.cn
mailto:wenkew@gmail.com
http://dx.doi.org/10.1016/j.jhydrol.2016.03.035
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol


A finite analytic method (FAM) was presented by Chen and
Chen (1981, 1984) to solve heat conduction, and Navier-Strokes
equations. Zeng and Li (1987) advocated that the finite analytic
method could minimize the truncation errors and yield stable
numerical solutions. Hwang et al. (1985) applied FAM to solving
two-dimensional solute transport equation, and reported that
FAM produced accurate results and eliminated numerical disper-
sion for large Peclet numbers. A hybrid Laplace transform finite
analytic method (LTFAM) was developed by Wang et al. (2012)
for solving advection–dispersion equations. Comparing results of
LTFAM with those of the analytical solutions, they concluded that
the LTFAM generated highly accurate numerical solutions even
under the conditions where Peclet numbers are greater than 50.
Using an optimal time-weighting factor, Tsai et al. (1993) built
an FAM for solving the h-based Richards’ equation with irregular
boundaries. By combining with fine-point local elements and
nine-point local elements, they reported that the FAM could easily
incorporate irregular surface boundary conditions. However, they
found that FAM, based on the h-based form of Richards’ equation,
cannot guarantee global mass conservation. Recently, Zhang et al.
(2015) formulated an FAMH, which is based on Kirchhoff trans-
form of the h-based Richards’ equation, and showed that FAMH
can lead to relatively high accurate and stabile numerical solutions.
Furthermore, they proved the convergence and stability of the
FAMH by a rigorous mathematical analysis.

To our knowledge, no study has applied the FAM to the mixed-
form Richards’ equation up to date. The purpose of this study
thus is to develop a FAM for the mixed-form Richards’ equation
(i.e., FAMM) and to investigate its mass conservative property
and accuracy. We first present a finite analytic computational
framework of the mixed-form Richards’ equation. Numerical
experiments are then presented that evaluate performance of this
new method. They include those for comparison solutions of
FAMM and MPFD with analytical solutions, derived for two con-
stitutive relationship models, for transient soil water pressure
distributions. At last, FAMM solutions are compared with those
from MPFD and Hydrus-1D models, which are formulated with
Mualem-van Gehuchten constitutive relationship model for tran-
sient infiltration into different types of soils under different initial
conditions.

2. Formulation of FAMM

This study assumes that moisture movement in the unsaturated
zone is described by following equation (Brunone et al., 2003).
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in which h is moisture content (cm3/cm3), h is soil water pressure
head (cm), z denotes the vertical dimension, and downward direc-

tion is positive (cm), kðhÞ represents the unsaturated hydraulic con-
ductivity of the soil (cm/h), which is a function of soil water
pressure head, and t is time (h).

Generally speaking, two types of constitutive mathematical
models for describing hydraulic properties of soils under unsatu-
rated conditions have been widely used by soil scientists. One is
the Gardner model (1958) (hereafter Type 1 model), in which

k ¼ kseðbhÞ ð2Þ
for hydraulic conductivity and pressure head relationships, and

h ¼ hr þ ðhs � hrÞeðbhÞ ð3Þ
for moisture and pressure head relationships. These two
relationships lead to

dh

dk
¼ hs � hrð Þ

ks
ð4Þ

Notice that Eq. (4) is a constant, independent of pressure head. This
model allows Srivastava and Yeh (1991) to derive an analytical
solution for solving vertical infiltration problems. This exponential
model has been popular because of its simplicity and convenience
for mathematical analyses. It, nevertheless, fits the observed K(h)
or h(h) data in an approximate sense.

Another mode is called Type 2 model, which is a combination of
the K(h) model by Mualem (1976)

KðhÞ ¼ Ksð1� ðajhjÞn�1½1þ ðajhjÞn��mÞ2 1þ ðajhjÞn� �ð�m=2Þ ð5Þ

And the h(h) model by van Genuchten (1980)

hðhÞ ¼ ðhs � hrÞ½1þ ðajhjÞn��m þ hr ð6Þ
It is also known as the MVG model. In Eqs. (5) and (6), | | repre-

sents the absolute value, a [1/L], n [-], and m [-] are soil parameters
and m = 1–1/n. van Genuchten and Nielsen (1985) claimed that Eq.
(5) is valid over a broader range of pressure head values than the
exponential model.

To take advantage of Type 1 model and Type 2 model, a third
type mode (Type 3) is used in this study. In this type model, the
exponential model (Eq. (2)) in Type 1 is used to describe the rela-
tionships between the hydraulic conductivity and the pressure
head. For the moisture content and the pressure head relationship,
Eq. (6) of Type 2 model is used. Specifically, Type 3 uses the follow-
ing relationships:

k ¼ kseðbhÞ ð7Þ

for hydraulic conductivity and pressure head relationship and

hðhÞ ¼ hs � hrð Þ 1þ ðajhjÞn� ��m þ hr ð8Þ

for moisture and pressure head relationship. Eqs. (7) and (8) are our
Type 3 model in this study. Using this model, we derive the follow-
ing function:

dh

dk
¼
amnðhs � hrÞ a

b log k
ks

� ���� ���� �n�1

bk 1þ a
b log k

ks

� ���� ���� �nh imþ1 ð9Þ

where a is a soil pore-size distribution parameter (1/cm), ks is the
saturated hydraulic conductivity of soil (cm/h), hs and hr are the sat-
urated moisture content (cm3/cm3) and residual moisture content
(cm3/cm3), respectively. Further, n is a function of the pore size dis-
tribution, m ¼ 1� 1=n, and b is a constant sorptivity number.
Ghezzehei et al. (2007) proposed a generalized conversion formulae
that relates the sorptivity to n and a (i.e.,b � 1:3na) of type 2 model.
When n P 1:5, b � a

ð�1:674m4þ7:192m3�11:4m2þ6:852m�0:970Þ, which is called

the capillary length method. Generally speaking, using the general-
ized conversion formulae, type 3 model matches with Type 2 model
closer than using the capillary length method. However, when n
approaching 2, using both of formulae, type 3 model yield behaviors
closely resembling that of Type 2 model.

Since Type 2 relationships are complex nonlinear functions, it is
difficult to implement them into FAMM. In the following analysis,
FAMM will be formulated using Type 1 and Type 3 for the unsatu-
rated hydraulic conductivity function and moisture retention func-
tion in this study. Appendix A provides the FAMM formulation for
constitutive models by Campbell (1985), and Brooks and Corey
(1964).
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