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s u m m a r y

Phosphorous (P) fate and transport models are important tools for developing and evaluating conserva-
tion practices aimed at reducing P losses from agricultural fields. Because all models are simplifications of
complex systems, there will exist an inherent amount of uncertainty associated with their predictions. It
is therefore important that efforts be directed at identifying, quantifying, and communicating the differ-
ent sources of model uncertainties. In this study, we conducted an uncertainty analysis with the Annual P
Loss Estimator (APLE) model. Our analysis included calculating parameter uncertainties and confidence
and prediction intervals for five internal regression equations in APLE. We also estimated uncertainties
of the model input variables based on values reported in the literature. We then predicted P loss for a
suite of fields under different management and climatic conditions while accounting for uncertainties
in the model parameters and inputs and compared the relative contributions of these two sources of
uncertainty to the overall uncertainty associated with predictions of P loss. Both the overall magnitude
of the prediction uncertainties and the relative contributions of the two sources of uncertainty varied
depending on management practices and field characteristics. This was due to differences in the number
of model input variables and the uncertainties in the regression equations associated with each P loss
pathway. Inspection of the uncertainties in the five regression equations brought attention to a previ-
ously unrecognized limitation with the equation used to partition surface-applied fertilizer P between
leaching and runoff losses. As a result, an alternate equation was identified that provided similar predic-
tions with much less uncertainty. Our results demonstrate how a thorough uncertainty and model resid-
ual analysis can be used to identify limitations with a model. Such insight can then be used to guide
future data collection and model development and evaluation efforts.

Published by Elsevier B.V.

1. Introduction

The translocation of phosphorus (P) from the landscape to sur-
face waters via runoff, erosion, and/or subsurface leaching can lead
to water quality deterioration of P-sensitive water bodies. The
degradation of water quality resulting from P loading from diffuse
sources is a global concern (Kleinman et al., 2015; Sharpley et al.,
2015) with such notable examples as the Baltic Sea, Chesapeake
Bay, Florida Everglades, Mississippi River, and Yangtze River
(Boesch et al., 2006; Dai et al., 2011; Dale et al., 2010; Executive

Order 13508, 2009; HELCOM, 2011; Richardson et al., 2007). In
many areas, agriculture is a significant contributor of P loading to
P-sensitive waters. To mitigate the effects of agricultural activities
on water quality, decades of research has been devoted to better
understanding the processes controlling P movement through the
landscape and in developing conservation practices to minimize
P losses (Radcliffe and Cabrera, 2007). Given the costs and long-
term commitments associated with field-scale experiments,
emphasis has also been placed on using field-scale models to test
different management strategies on reducing P loss from agricul-
tural fields. Model simulations have also been used to assess the
effectiveness of various conservation practices at the watershed
scale (USDA-NRCS, 2013). To corroborate the findings of any
model, however, will require comparing model predictions with
long-term monitoring data.

http://dx.doi.org/10.1016/j.jhydrol.2016.05.009
0022-1694/Published by Elsevier B.V.
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Whilemodel predictions of P fate and transport can provide use-
ful information to researchers, land owners, regulatory agencies,
and other stakeholders, uncertainties exist with all model predic-
tions, regardless of how complex or ‘‘physically-based” a model
may be (Radcliffe et al., 2009; Sharpley et al., 2002). Several sources
of uncertainty exist that are inherent to all P loss models (Beck,
1987; Beven et al., 2007; Gupta et al., 2012). These include model
structure errors/inadequacies that resultwhen approximating com-
plex physical phenomena with simplified mathematical models.
These approximations result from our incomplete knowledge of
the system, as well as practical limitations of including all processes
and associated parameters into the model. Moreover, errors may be
introduced by the numerical methods employed for solving the
model equations andhowthemodel is discretized in timeand space.
In addition, there is an inherent amount of randomness within nat-
ural systems (both temporally and spatially), much of which is not
adequately, or cannot reasonably be, captured by models.

Measurement errors in the input variables that are required to
run the model such as precipitation, evapotranspiration, soil test
P, P application rates, and initial and boundary conditions will also
affect the accuracy of the model predictions. Moreover, there may
be errors resulting from using unrepresentative values for these
input variables; for instance, the use of measured soil test P (STP)
at a point to describe spatially variable STP over a large area. Errors
associated with the model parameters will also affect the reliability
of the model predictions. The magnitude of the errors introduced
from these different sources will depend on the validity of the
model assumptions, the complexity of the model, the quality of
the input data, and on how well the various model parameters
have been estimated. Because these errors are often interrelated,
it is difficult to isolate and obtain good estimates of their magni-
tude, particularly errors associated with model structure (Gupta
et al., 2012; Yen et al., 2014). Further complicating matters is that
multiple models and parameter sets may describe a data set
equally well (Beven, 2006a). Nevertheless, efforts should be taken
to obtain reasonable estimates of model uncertainties (National
Research Council, 2007; USEPA, 2009). These uncertainties may
be estimated by model uncertainty analysis, values reported in
the literature, and/or expert assessment (Uusitalo et al., 2015).

The impact of model parameter uncertainty on predictions of P
loss is arguably the most common type of uncertainty analysis con-
ducted with P loss models (Barlund and Tattari, 2001; Beven et al.,
2007; Dean et al., 2009; Krueger et al., 2009; McFarland and Hauck,
2001; Smith and Wheater, 2004; Veith et al., 2010; Zhang and
Haan, 1996). Model parameters are those constants incorporated
into the model equations for making calculations from input data.
Values for model parameters are often estimated by adjusting (i.e.
calibrating) their values (either manually or by an automated com-
puter algorithm) until the differences between modeled and
observed data are minimized. A commonly used method in the
hydrological sciences for model calibration is least-squares regres-
sion, where values of the model parameters are chosen that mini-
mize the sum of the squared differences between model
predictions and observations. Uncertainties in the model parame-
ters can be estimated from the resulting parameter variance-
covariance matrix provided that the assumptions of least-squares
regression are valid or not too badly violated (Seber and Wild,
2003; Draper and Smith, 1998; Helsel and Hirsch, 2002). Potential
sources of errors in model parameters estimated by calibration
include: using incorrect calibration performance measures (i.e.
optimization targets); using inaccurate, incomplete, or unrepre-
sentative data sets during model calibration; and ignoring uncer-
tainties in the calibration data (Bolster and Tellinghuisen, 2010;
Haan, 2002; Sorooshian and Gupta, 1995).

We recently conducted an analysis investigating the effects of
model input error on prediction uncertainties of P loss at the field

scale using the Annual P Loss Estimator (APLE) model (Bolster
and Vadas, 2013), an empirically-based spreadsheet model devel-
oped to describe annual, field-scale P loss when surface runoff is
the dominant P loss pathway (Vadas et al., 2009). In this study,
we extend our analysis by evaluating the effects of model param-
eter uncertainties on predictions of P loss for APLE. The specific
objectives of this study were to estimate the model parameter
uncertainty associated with five internal regression equations
used in APLE and to evaluate how the parameter uncertainties
affect model prediction uncertainties. We estimate the parameter
uncertainties associated with the regression equations used to
estimate total soil P from measurements of soil clay content,
organic matter, and labile P; the P enrichment ratio calculated
from erosion rates; concentration of P in runoff calculated from
labile soil P; and the partitioning of P between runoff and infiltra-
tion for applied manures and fertilizers based on runoff ratio. Our
analysis included calculating parameter uncertainties and 95%
confidence and prediction intervals for the regression equations.
We then calculated predictions of P loss using the APLE model
while including uncertainties in model parameters and inputs
and compared the relative magnitude of these sources of uncer-
tainty to the overall uncertainty associated with predictions of
P loss. Results from this study highlight the importance of includ-
ing reasonable estimates of model parameter uncertainties when
using models to predict P loss. Our results also demonstrate how
the estimation of model parameter uncertainty can be used to
identify model limitations.

2. Methodology

2.1. Annual P Loss Estimator (APLE) model

The APLE model calculates annual total P loss in surface runoff
from agricultural fields as (Vadas et al., 2009):

Ptot ¼ Psed þ DPsoil þ DPman þ DPfert ð1Þ
where Ptot is the total annual P loss from surface runoff (kg ha�1),
Psed is annual sediment P loss from eroded soil (kg ha�1), DPsoil is
annual dissolved P loss in runoff from soil (kg ha�1), DPman is annual
dissolved P loss in runoff from applied manure (kg ha�1), and DPfert
is annual dissolved P loss in runoff from applied fertilizer (kg ha�1).
Each component in Eq. (1) includes one or more terms obtained by
regression as detailed below (Vadas et al., 2009).

The component estimating particulate P loss is calculated as:

Psed ¼ SED � PER � TP � 10�6 ð2Þ
where TP is total soil P (mg kg�1), SED is the annual erosion rate
(kg ha�1), PER is the P enrichment rate that accounts for the prefer-
ential movement of fine soil particles enriched in P, and 10�6 is a
unit conversion factor. The P enrichment ratio is calculated as:

PER ¼ C1 � SEDC2 ð3Þ
where C1 and C2 are regression coefficients. The model is coded so
that PER has a minimum value of 1.

Total soil P is determined by summing four simulated P pools:
organic (OP), labile (LP), active (OP), and stable (SP). The organic
P pool (OP) is calculated as:

OP ¼ 104 � SOC=ðNP � CNÞ ð4Þ
where 104 is a unit conversion factor, SOC is percent soil organic
carbon (assumed to be equal to 58% of soil organic matter), NP is
the nitrogen to phosphorus ratio in the soil organic matter
(assumed to be 8), and CN is the carbon to nitrogen ratio of the soil
organic matter (assumed to be 14). The active (AP) and stable P (SP)
pools are determined by (Jones et al., 1984):
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