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s u m m a r y

Physically based hydrological models are complex tools that provide a complete description of the differ-
ent processes occurring on a catchment. The TOPMODEL-based Land–Atmosphere Transfer
Scheme (TOPLATS) simulates water and energy balances at different time steps, in both lumped and dis-
tributed modes. In order to gain insight on the behavior of TOPLATS and its applicability in different con-
ditions a detailed evaluation needs to be carried out. This study aimed to develop a complete evaluation
of TOPLATS including: (1) a detailed review of previous research works using this model; (2) a sensitivity
analysis (SA) of the model with two contrasted methods (Morris and Sobol) of different complexity; (3) a
4-step calibration strategy based on a multi-start Powell optimization algorithm; and (4) an analysis of
the influence of simulation time step (hourly vs. daily). The model was applied on three catchments of
varying size (La Tejeria, Cidacos and Arga), located in Navarre (Northern Spain), and characterized by dif-
ferent levels of Mediterranean climate influence. Both Morris and Sobol methods showed very similar
results that identified Brooks–Corey Pore Size distribution Index (B), Bubbling pressure (wc) and
Hydraulic conductivity decay (f) as the three overall most influential parameters in TOPLATS. After
calibration and validation, adequate streamflow simulations were obtained in the two wettest
catchments, but the driest (Cidacos) gave poor results in validation, due to the large climatic variability
between calibration and validation periods. To overcome this issue, an alternative random and
discontinuous method of cal/val period selection was implemented, improving model results.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

The intense development in the field of hydrological simulation
offers researchers worldwide dozens of models capable of simulat-
ing streamflow and other processes, at different time and spatial
scales (e.g., Burnash et al., 1973; Chiew and McMahon, 2002;
Brocca et al., 2011). Although they can easily be applied on differ-
ent conditions (in terms of climate, catchment size or time-step),
achieving the best simulation results depends largely on the users’
knowledge of model structure and available tools to maximize the
accuracy of the results (Khakbaz et al., 2012). Thus, achieving opti-
mal calibrated and validated streamflow values requires, first,
detailed sensitivity analyses to provide the modeler with objective
criteria to identify the parameters to include on the calibration
procedure and next, calibration and validation strategies to find
the parameter values that optimize model results (Van
Werkhoven et al., 2009). Model performance and optimal parame-
ter values will depend then largely on: (1) catchment size, (2) rain-

fall pattern and climate conditions, (3) modeling time-scale, and
the suitability of model structure to all of them (Demaria et al.,
2007).

Sensitivity Analysis (SA) techniques can identify influential
parameters, i.e. those whose uncertainty reduction will have the
most significant impact on improving model performance (Gan
et al., 2014) and provide model users with useful information to
reduce calibration dimensionality (Garambois et al., 2013). If some
insensitive parameters are identified through SA, they can be fixed
reasonably at given values over their variation range. Thus, reduc-
ing calibration computational cost without decreasing model
performance.

Sun et al. (2012) classified SA methods into three types: (1)
local, (2) screening and (3) global, depending on the way parame-
ters were perturbed. Local methods quantify the percentage
change of outputs due to the change of model inputs relative to
their baseline (nominal) values (Tang et al., 2007). These methods,
also referred to as One-at-A-Time (OAT), evaluate the response of
output variables to fractional changes in one single input parame-
ter and are therefore less efficient on complex models. Even on
models where parameters are independent, the combination of
single-parameter influences can make local methods to fail on
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capturing model behavior due to non-linearity of model response
(Norton, 2009). Screening methods also analyze the model
response to a change in the inputs by varying one parameter at a
time, but they provide a global sensitivity measure, since different
elementary effects (EE) for each parameter are calculated and aver-
aged (Campolongo et al., 2011). They are commonly applied to
cases where a large number of parameters needs to be analyzed,
or to computationally expensive models where more demanding
quantitative techniques might lead to extended simulation times.
Finally, global methods, vary simultaneously all studied parame-
ters within their defined parameter space, thus providing informa-
tion on both individual sensitivity and parameter interaction
degrees. Global methods look at the entire input parameters distri-
bution, using specifically designed Monte Carlo sampling tech-
niques of various levels of sophistication, but their application to
computationally demanding models might be constrained due to
the large number of model runs required (Song et al., 2015). Global
methods are recognized as appropriate for hydrological modeling,
as they have to evaluate nonlinear processes and high parameter
and data uncertainty due to spatial heterogeneity (Spear et al.,
1994). Global methods include the following groups (Tang et al.,
2007): (1) Regional SA (Young, 1978), (2) Bayesian SA (Oakley
and O’Hagan, 2004), (3) regression based approaches (Spear
et al., 1994), and (4) variance decomposition methods (Saltelli
et al., 2000). Screening and global SA methods include two steps:
first, a strategy is used to sample the parameter space (i.e. Design
of experiment, DoE) and next a numerical measure is used to quan-
tify the impacts of sampled parameters on model output (Wagener
and Kollat, 2007).

Once the most sensitive parameters of a model have been iden-
tified through SA procedures, they need to be calibrated, i.e. esti-
mated through an inverse method so that observed and
predicted output values are in agreement (Zhang et al., 2009).
Therefore, successful application of any hydrological model
depends on how accurately the model is calibrated (Duan et al.,
1992). Although model calibration used to be a labor intense task
that depended largely on modeler knowledge and experience,
nowadays computers allow automatic calibration techniques.
These are commonly optimization algorithms that search for a
set of parameters values that minimize the model prediction error
relative to available measured data for the system being modeled
(Tolson and Shoemaker, 2007). Gupta et al. (1998) pointed out that
automatic calibration success depends largely on three aspects: (1)
adequate calibration data (mainly in terms of data length and cli-
mate variability contained), (2) the objective function (maximum
likelihood functions for measuring the ‘‘closeness” of the model
and the data), and (3) the selected optimization algorithm. How-
ever, some studies reported difficulties in finding unique (global)
optimum parameter values due to parameter nonuniqueness or
equifinality, parameter correlation, or other limitations (Duan
et al., 1992).

Calibration of hydrological models for areas with irregular rain-
fall patterns, such as Mediterranean ones, implies an extra effort in
terms of model adaptability and data availability (Loaiza-Usuga
and Pauwels, 2008). Several authors (Gan and Biftu, 1996; Li
et al., 2010; Perrin et al., 2007) noted that arid catchments are gen-
erally more difficult to model than humid ones due to the com-
plexity and variability of hydrological processes there. This can
be related to model’s response to intense rainfall events and to
large inter-annual rainfall variability. Conventional continuous cal-
ibration and validation period selection (i.e., selection of a calibra-
tion period of n years, followed by a validation period of m years)
may be a limitation when large differences on climate variables
are found among both periods. Thus, alternative (random and dis-
continuous) period selection methods that lead to a similar calibra-
tion and validation climatological conditions and to a minimum of

high flows included on the calibration period are worth being
explored (Kim and Kaluarachchi, 2009). As stated by (Sorooshian
and Gupta, 1983) it is not the length of the data series used but
the information contained in it and the efficiency with which that
information is extracted that are important. Random sampling
approaches are expected to overcome different difficulties, which
could include: (1) data availability discontinuity (i.e. Kim and
Kaluarachchi, 2009), (2) lack of data series long enough to achieve
proper calibration and validation results, or (3) large climate vari-
ability between calibration and validation periods.

Optimization algorithms used on hydrological model calibra-
tion are divided into local (Tolson and Shoemaker, 2007) and global
search methods (Duan et al., 1993). One of the first optimization
algorithms was proposed by Powell (1964), and was applied for
the first time to hydrological modeling by Kobayashi and
Maruyama (1976). This algorithm is a local, derivative-free method
where one parameter value is changed at-a-time. Chen et al. (2005)
applied a modified multi-start version of the Powell method for
model calibration, which is also implemented on this study.

Hydrological models cover a range of variability in terms of
parameter complexity, running time-scale, conceptual structure
and spatial distribution design (lumped and distributed). Accord-
ing to these characteristics, they may offer better results under cer-
tain terrain or climate conditions. Among them, there has been a
significant development of catchment models based on the TOP-
MODEL concept (Beven and Kirkby, 1979). From this initial concep-
tualization, Famiglietti and Wood (1994), started the development
of a full hydrological catchment model that incorporated a
separate computation of water and energy balances. This model
was called TOPMODEL-based Land–Atmosphere Transfer
Scheme (TOPLATS).

TOPLATS can be run at any user-specified time step, from daily
(Bormann et al., 2007) to hourly (Loaiza-Usuga and Pauwels, 2008),
or even on less than a minute time-step (Seuffert et al., 2002).
While this permits the model to be applied for an extensive range
of purposes, it can also affect model performance, especially in
terms of runoff and soil moisture processes simulation. It has been
applied on a wide range of locations worldwide but TOPLATS sim-
ulations on Mediterranean catchments was only reported in
Loaiza-Usuga and Pauwels (2008) and in Loaiza-Usuga and Poch
(2009). The complexity of TOPLATS makes it necessary to use effi-
cient SA methods to get a better understanding of its behavior. To
the authors’ knowledge, no comprehensive SA of TOPLATS has been
performed and published so far. Thus, a detailed SA of the different
hydrological processes calculated by TOPLATS could be a worth-
while contribution to improve the understanding and to facilitate
the calibration of this model.

This study aims to evaluate TOPLATS as a streamflow simula-
tion tool in Mediterranean catchments. This evaluation includes a
detailed SA of TOPLATS model to identify influential parameters
that should be included on a subsequent calibration/validation
(CAL/VAL) approach, so that optimum streamflow simulation is
achieved. This is done for three catchments of different sizes
located on an area of Mediterranean climate, and considering dif-
ferent modeling time-steps. This broad objective expands to
achieve the following specific objectives: (1) to provide a detailed
review of previous works carried out with TOPLATS, specifically
those related with model parameterization and calibration, (2) to
develop a sensitivity analysis of selected parameters on: surface
runoff, baseflow, evapotranspiration, soil moisture patterns and
streamflow simulation (discriminating between peaks, average
and low flows), (3) to compare two SA methods of different com-
plexity and computational requirements, (4) to evaluate the per-
formance of an optimization algorithm for model calibration at
different time-scale simulations (daily and hourly), (5) to appraise
the influence of continuous or random period selection for
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