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s u m m a r y

Hydrological flow routing methods are widely used as components of distributed hydrological models
and in operational flow forecasting systems. The paper presents a novel approach to reformulate several
of these routing schemes as a cascade of implicit pool routing models. Its numerical implementation is
mass conservative and total variation diminishing, i.e. the solution does not oscillate or overshoot, for
arbitrary time steps. It is shown that these numerical properties are achieved regardless of the accuracy
of the scheme and its physical routing characteristics.
Numerical experiments compare the computational performance and accuracy of the novel, reformu-

lated approach with existing schemes including linear reservoir routing, nonlinear reservoir routing, and
the Muskingum–Cunge method. We show that the approach can reproduce the original schemes, if these
are already mass conservative, otherwise fixes the mass conservation in the reformulated version and
improves the solution at sharp gradients by suppressing numerical oscillations, overshooting or negative
flows.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

The motivation for this research arises from our use of several
hydrological routing schemes in operational flow forecasting and
decision support systems primarily for hydropower utilities
(Schwanenberg et al., 2014, 2015). In these systems, short-term
release decisions at reservoirs are evaluated by routing the flow
downstream to other reservoirs or potential inundation areas to
access its impact on flood mitigation, hydropower revenues or
other objectives. Decisions are derived interactively by system
operators or optimization algorithms. A common requirement of
both approaches is the need for an accurate, robust and
mass-conservative routing scheme.

Existing linear routing schemes such as the linear reservoir
routing (Nash, 1958; Kalinin and Miljukov, 1958) or the Musk-
ingum approach (McCarthy, 1938; Kalinin and Miljukov, 1958)
are mass conservative by design. However, their linear nature
makes it challenging to achieve high accuracy over a broad flow
regime due to the assumption of constant wave celerity. Further-

more, sharp gradients in the inflow may lead to unphysical oscilla-
tions in the solution and negative flows in particular in the rising
limb of a hydrograph (Perumal, 1992; Perumal and Sahoo, 2008).
The latter becomes a significant drawback when routing reservoir
releases downstream, in particular if hydropower projects
implement hydro peaking and generate sharp flow gradients.

Cunge (1969) provides the most popular method to address the
accuracy issue by the introduction of the Muskingum–Cunge
approach. It makes the former constant parameters of the
Muskingum scheme variable and dependent on the flow and other
parameters. Successors such as (Price, 1973; Ponce and Chaganti,
1994; Wang et al., 2006) follow this concept and provide variation
of the idea. A common feature of all these approaches is the loss of
mass conservation. The latter has been subject of a long-lasting
analysis and discussion (Tang et al., 1999; Cunge, 2001; Perumal
and Sahoo, 2008, and reference therein) up to the paper of Todini
(2007) who presents the root cause of the missing mass conserva-
tion and a related fix. Other authors such as Perumal and Price
(2013) and Reggiani et al. (2014) come to the same conclusions
and implement variations of Todini’s approach. A common feature
of all these schemes is the solution of the nonlinear, variable-
parameter Muskingum scheme by an iterative approach. Although
these schemes combine accuracy and mass-conservation, the
robustness issue is still not adequately addressed.
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Let’s leave the field of hydrology and review the progress in
other disciplines. The modeling of gas dynamics experienced a
breakthrough in its capabilities with the introduction of total vari-
ation diminishing (TVD) schemes by Harten (1983). The basic idea
behind is the combination of a monotone and non-oscillating first-
order scheme with a non-monotone, higher-order accurate scheme
such that the blended version keeps the high accuracy in smooth
regions of the solutions and reduces to first-order at sharp gradi-
ents and shocks by a flux or slope limiter. The interested reader
may find a broad review of these methods in Toro (1999) including
applications to the shallow water model which has a strong anal-
ogy to the Euler equations used in gas dynamics.

The objective of this paper is the formulation of a novel, gener-
alized approach for several hydrological routing schemes including
the ones discussed above. The derivation of the approach from a
finite volume formulation leads to mass conservation by design
regardless of the storage approximation or the physical justifica-
tion of the routing parameters. Furthermore, we introduce a limiter
to receive TVD properties, i.e. numerical oscillations or negative
flows will not occur in the solution. Numerical experiments
demonstrate the performance of the approach in comparison to
existing routing schemes in terms of mass conservation, accuracy
and numerical robustness.

2. Methodology

Our starting point is the conservative form of the one-
dimensional shallow water or Saint Venant equations provided by

@A
@t

þ @Q
@x

¼ qL ð1Þ

@Q
@t

þ @

@x
Q2

A

 !
¼ gA � @z

@x
� Sf

� �
ð2Þ

where A is the cross section area, Q is the flow, qL is a lateral flow, z
is the water level, Sf is the friction slope depending on the dimen-
sions space x and time t, g is the acceleration due to gravity.

Following the finite volume methodology, the mass conserva-
tion in Eq. (1) can be schematized in the control volume
x ¼ ½j� 1=2; jþ 1=2�, t ¼ ½k� 1; k� (Fig. 1) by integrating Eq. (1) over
space and time according toZ k
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where the storage S is the integrated area A along the spatial dimen-
sion of the control volume x 2 ½j� 1=2; jþ 1=2�. An important aspect

of the schematization is that the quantities Sk�1;k
j , Qk�1=2

j�1=2 and qk�1=2
L;j

are integrals over the boundaries of the control volume and not a
representation at a specific point as in a finite difference approach.

Sk�1;k
j is the quantity we want to conserve, i.e. the volume of water

in the system. Qk�1=2
j�1=2 is the so-called flux term which defines the

exchange of water between the finite volumes. If the flux has the
same unit of the quantity to be conserved, it is obvious that such
a formulation is conservative by definition.

Up to this point, our derivation has been generic for hydraulic or
hydrological routing methods. Let’s now introduce the two main
ideas behind hydrological routing:

1. Under the assumption of a sufficiently steep river reach and
neglecting backwater effects, the flux Qj�1=2 is replaced by its
upstream value according to Qj�1=2 ¼ Qj�1. This corresponds to
a first-order upwind scheme. It decouples the computation of
the finite volumes in a time step and enables a subsequent com-
putation from upstream to downstream. In contrary, a hydrau-
lic model depends on the simultaneous computation of all
volumes at one time step. This fact is the key to the higher com-
putational performance of hydrological routing approaches.

2. The momentum equation Eq. (2) gets replaces by an algebraic
equation to define a relation between storage, flow and some
other parameters according to a general implicit function
f ðS;Q ; pÞ ¼ 0.

For simplicity, we further assume that the storage can get
expressed as an explicit function of flow and some parameters
according to SðQ ; pÞ. This allows rewriting Eq. (4) for the control
volume j to receive

SkðIk;Qk; pÞ � Sk�1ðIk�1;Qk�1;pÞ
Dt

� Ik�1=2 þ Qk�1=2 ¼ 0 ð5Þ

where we introduce a simplified notation according to
I ¼ Qj�1 þ DxqL;j, Q ¼ Qj and S ¼ Sj. The continuous form of Eq. (5)
is the one of a lumped nonlinear reservoir according to the ordinary
differential equation (ODE)

dSðI;Q ;pÞ
dt

� I þ Q ¼ 0 ð6Þ

On the other hand, we receive a discrete-time form of Eq. (5) by
the application of the h-method to express the intermediates Ik�1/2,
Qk�1/2 as variables of the time steps k� 1; k by

Ik�1=2 ¼ ð1� hIÞIk�1 þ hI I
k

Qk�1=2 ¼ ð1� hQ ÞQk�1 þ hQQ
k

ð7Þ

to receive

FðIk�1;k;Qk�1;kÞ¼ SkðIk;Qk;pÞ�Sk�1ðIk�1;Qk�1;pÞ
Dt

�ð1�hIÞIk�1�hI I
kþð1�hQ ÞQk�1þhQQ

k ¼0
ð8Þ

where F is an implicit function representing the mass error in the
reservoir and hI; hQ are time weighting coefficients with
unconditional stability in the range ½0:5; 1�. Eq. (8) is either linear
or nonlinear depending on the storage function SðI; Q ; pÞ. In a
generic setup, the solution of F ¼ 0 can be achieved by a Newton–
Raphson iteration procedure. Since the inflow is given at both time
steps k� 1; k and the outflow is available at k� 1, the only

Fig. 1. Control volumes formulation of the mass balance equation where the indices
j and k denote discrete variables in space x and time t, respectively.
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