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s u m m a r y

Natural hydrological regimes are essential to the stability of river basins. While numerous efforts have
been put forth to characterize flow regime alterations driven by climate change and human activities,
few approaches have been proposed to explore changes in watershed resilience. The present study
attempted to introduce a systematic approach that can be used to identify the resilience change of river
basins based on annual river discharge through the application of a convexmodel and the principle of crit-
ical slowing down. Specifically, a resilience indicator (pi) that reflects streamflow autocorrelation at a
given time was proposed to represent the temporal variation of the system resilience, and annual water
discharge at representative hydrological stations located in upstream, midstream, and downstream
regions of a river basin was used to reflect alterations in long-term hydrological processes and the stability
of river basins. The application of this method to the Yellow River basin and Yangtze River basin indicated
that the system resilience was lower in downstream regions compared to upstream regions. The Yellow
River basin has suffered a decrease in resilience in its lower reaches since 1971, which extended to the
middle reaches in 1987 and upper reaches in 1990. Similarly, recent observation of the resilience change
in the Yangtze River basin indicated that resilience in its lower reaches has likely decreased since 2002,
and this low resilience extended to the middle reaches in 2005. Overall, our study presents a newmethod
to predict potential decreases of resilience in complex large scale watershed systems where mechanistic
insight is insufficient to build reliable basin-scale hydrological, climate, ecosystem integrated models.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

At the global scale, watersheds are now suffering from severe
perturbations due to both climate change and anthropogenic dis-
turbances, and notable examples include the Amazon basin and
the Mississippi River basin (Davidson et al., 2012; Kidder, 2006;
Levine et al., 2016; Liu and Zheng, 2002). In the Amazon basin,
which is the location of the world’s largest rainforest, unprece-
dented deforestation has caused a series of changes at the local
and regional scales that have involved alterations in energy and
water cycles (Davidson et al., 2012). As a representative of the
capacity of a watershed to absorb and recover from perturbations
or disturbances (Folke et al., 2010; Hoque et al., 2012; Randhir,
2014; Wilson and Browning, 2012), watershed resilience and asso-
ciated transitions in watershed systems has becomes a critical
topic in river basin conservation and management (Davidson
et al., 2012). In order to understand the vulnerability and resilience

of river basins in the face of change, numerous studies have strived
to improve knowledge of the linkages between natural variability,
drivers of change, ecosystem responses, and feedbacks within a
watershed system or its subsystems; these studies have employed
both tendency analysis of perturbations and watershed structure
(Costa et al., 2003; Zhang et al., 2014a; Zhao et al., 2015a) and
process-based model simulations (Coe et al., 2002, 2011; Hu
et al., 2015; Levine et al., 2016). For example, Nemec et al. (2014)
calculated watershed resilience with nine watershed structure
properties, i.e. ecological variability, diversity, modularity,
acknowledgement of slow variables, tight feedbacks, social capital,
innovation, overlap in governance, and ecosystem services. Hirota
et al. (2011) recognized forest, savanna, and treeless state as three
distinct attractors and empirically reconstructed the basin of
attraction through analyzing the response of the global tree abun-
dance pattern to precipitation. Levine et al. (2016) predicted the
stability of the Amazon rainforest to climate change with coupled
vegetation–climate models. Furthermore, Cosens and Williams
(2012) analyzed resilience mechanisms in the Amudarya River
basin through an agent-based model.
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The problems are that (1) while existing statistical analyses
based on temporal variation tendency of hydrological sequences,
climate sequences, andother anthropogenic events are able to quan-
tify the hydrological alteration and its main contributors, and are
also direct, efficient, and scale flexible. Yet they have much limita-
tion in deducing necessary information on the vulnerability and
resilience change of river basins over time; (2) process-based mod-
eling approaches including hydrological models, climate change
models, and ecological models, which typically have more clear
structural relationships between each segment within the model,
are promising for detecting resilience change, however, use of these
model is associated with tradeoffs between structural complexity
andoutcomeuncertaintiesdue to thecoarseor even incomplete rep-
resentations of inner processes (Lewis et al., 2011;Malhi et al., 2009;
Marengo, 2004; Marengo et al., 2008; Rammig et al., 2010). This
shortcoming may enlarge the uncertainty of a simulated outcome
and estimated tipping points when combining climate change,
hydrological responses, andecological feedbacks intoone integrated
model even if this is technically feasible. We believe that with pro-
gress inmodeling, the uncertainties can be narrowed by elucidating
aprocess-level understandingof key relationships (Clarket al., 2015,
2016; Fatichi et al., 2016), but wewonder if before that, theremight
be another way that can shed some light on how basin resilience
responds and if the river basin is under transition.

As a phenomenon that connects diverse ecosystems, human
activities, and atmospheric processes within awatershed, the water
cycle is not only crucial in maintaining watershed health, but it is
also vulnerable to climate change and excessive human activity
(Milly et al., 2008; Ouyang et al., 2009; Sun and Feng, 2013; Xu
et al., 2007; Zhao et al., 2012). Consequently, long-term river flow
regimes (streamflow) are acknowledged to be the accumulated rep-
resentation of the upstream hydrological cycle and thus are widely
used to reflect the disturbance suffered by the upstream subcatch-
ments (Belmar et al., 2013; Yang et al., 2008; Zhang et al., 2014b,
2015). In addition, with the acknowledgement of the complexity
of watershed systems, preliminary attempts have been made to
study hydrological systems with the application of complex net-
work theory, and this had shed light on how best to employ system-
atic angles to study the connections and complexities of
hydrological networks through spatiotemporal correlations of flow
regimes (Jha et al., 2015; Sivakumar and Woldemeskel, 2015).

The present study explores the usefulness of systematic theory
for studying the stability and resilience of watershed systems that
are naturally and anthropogenic disturbed. To this end, critical
slowing down theory was introduced and we then proposed a resi-
lience indicator (pi) to quantify the temporal variation in the resi-
lience of a watershed system based on a convex model and critical
slowing down features. Consequently, we applied the pi indicator
to the Yellow River and Yangtze River basins to identify differences
in the resilience trends between the river basins with different
functions. The spatial and temporal variations in the resilience of
each river basin was analyzed with the supplementation of back-
ground information on the perturbations that they experienced.
This study provides an attempt to study watershed resilience.
The reliable identification of watershed resilience alterations is
important because such data can indicate the development orien-
tation of a watershed, and if need be, the results can be sent as
alarm signals to local water resource management organizations.

2. Methodology

2.1. Background

To describe the stability and resilience of complex systems,
researchers have used conceptual models with the resilience intu-

itively expressed as the stability fate of a ball in a landscape of hills
and valleys, which are also known as attraction basins
(Fig. 1a and b) (Dakos et al., 2010; Peterson et al., 1998).

Recent theoretical work has suggested that a critical slowing
down, as measured by the increased autocorrelation of a state vari-
able (Fig. 1e and f), can be a generic leading indicator of low resi-
lience and an early warning signal for critical transitions, even
when mechanistic insight is insufficient for reliable predictive
models (Dakos et al., 2010, 2012b; Scheffer et al., 2009). This crit-
ical slowing down means that a system state variable will recover
slowly from small perturbations in the vicinity of bifurcation
points between two adjacent attraction basins (Fig. 1c and d). Such
critical slowing down has been observed across an array of com-
plex dynamic systems, such as those pertaining to ecosystems
(Dakos and Bascompte, 2014; Dakos et al., 2010, 2012a; Wouters
et al., 2015) climate (Dakos et al., 2008; Lenton, 2011; Lenton
et al., 2012), medicine (Meisel et al., 2015; Trefois et al., 2015),
and social-financial markets (Tan and Cheong, 2014).

2.2. Indicator of system resilience based on a convex model

Since a system state variable recovers slowly from small pertur-
bations near the transition between two adjacent attraction basins,
for the same observation frequency, more intermediate data,
which are neglected in a high resilience state, can be recorded in
a low resilience system (black points in Fig. 1c and d). Based on
the convex model for a time-variant variable from Jiang et al.
(2014), we built a convex set to show this calculation
(Fig. 1e and f). For each X(t) � X(t + s), s e 2, . . .,n, most points were
located around a centerline with a slope of 1 (dashed line in
Fig. 1e and f), which constituted a set of X(X | i, s). The deviation
of a point from the centerline was positively correlated with the
difference between xi+s and xi. To quantify the neighboring points
that deviated too much from xi (red points in Fig. 1e and f), a con-
vex set boundary was set (red lines in Fig. 1e and f).1 Finally, the i
and i + s value for each outlier (xi, xi+s) in each X(t) � X(t + s) were
counted and stored in a variable named Count.

The resilience of the system at time i was reflected by the
differences in xi and its neighboring points fxi�n; � � � ; xi�2; xi�1;

xiþ1;xiþ2; � � � ; xiþng;n 2 N�, and 2n was the number of neighboring
points considered. Larger differences corresponded to a higher resi-
lience. Thus, we proposed an indicator pi to count the number of
adjacent points with a strong deviation from xi, and this value
reflects the resilienceof a systemat time i. The calculationproceeded
as follows:

Di ¼ fxi�n; � � � ; xi�2; xi�1; xiþ1;xiþ2; � � � ; xiþng;n 2 N� ð1Þ
and for xj e Di,

f i;j ¼
1 jxi � xjj P e
0 jxi � xjj < e

�
; e ¼ 0:5kðXmax � XminÞ ð2Þ

pi ¼
Xj¼iþn

j¼i�n

f i;j ð3Þ

where e is the threshold that determines if xj deviates too much
from xi. Xmax and Xmin are the maximum and minimum of the state
variable X, respectively. k e (0,1) and the value of k directly define
the boundary of the convex set: k = 0 corresponds to an empty set
and k = 1 corresponds to the largest convex set that includes all
observation points inside. Here, we set k = 0.75, which means the
area of the convex set was equal to 75% of the area of the largest

1 For interpretation of color in Fig. 1, the reader is referred to the web version of
this article.
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