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s u m m a r y

Accurate projection of global warming on the probabilistic behavior of hydro-climate variables is one of
the main challenges in climate change impact assessment studies. Due to the complexity of climate-
associated processes, different sources of uncertainty influence the projected behavior of hydro-
climate variables in regression-based statistical downscaling procedures. The current study presents a
comprehensive methodology to improve the predictive power of the procedure to provide improved pro-
jections. It does this by minimizing the uncertainty sources arising from the high-dimensionality of atmo-
spheric predictors, the complex and nonlinear relationships between hydro-climate predictands and
atmospheric predictors, as well as the biases that exist in climate model simulations. To address the
impact of the high dimensional feature spaces, a supervised nonlinear dimensionality reduction algo-
rithm is presented that is able to capture the nonlinear variability among projectors through extracting
a sequence of principal components that have maximal dependency with the target hydro-climate vari-
ables. Two soft-computing nonlinear machine-learning methods, Support Vector Regression (SVR) and
Relevance Vector Machine (RVM), are engaged to capture the nonlinear relationships between predictand
and atmospheric predictors. To correct the spatial and temporal biases over multiple time scales in the
GCM predictands, the Multivariate Recursive Nesting Bias Correction (MRNBC) approach is used. The
results demonstrate that this combined approach significantly improves the downscaling procedure in
terms of precipitation projection.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is now broadly accepted that global warming is impacting
hydrological and climatological processes on regional and local
scales. These changes are expected to increase extreme hydrologi-
cal events and threaten water resources in different parts of the
world. Therefore, the assessment of the climate change impacts
on the availability of surface water resources is of particular inter-
est to water resources managers and decision makers for mitigat-
ing the adverse impacts of global warming.

Future climate change information is derived from simulated
large-scale atmospheric processes developed based on General Cir-
culation Models (GCMs). GCMs simulate climate at coarse spatial
scales, and are unable to provide information that can be directly
used at the finer scales of interest to hydrologists for assessing
how possible climate-change impacts on surface water availability
may affect water supply (Bennett et al., 2012; Dingbao Wang,

2013). This inadequacy has been the reason for developing dynam-
ical and statistical downscaling techniques to transfer large-scale
global atmospheric variables (provided by GCMs) to regional and
local hydro-climate information for use in climate change impact
studies. One option for this is dynamical downscaling approaches,
which are based on obtaining finer information from Regional Cli-
mate Models (RCMs) driven by boundary conditions simulated
using GCMs (Najafi and Moradkhani, 2015). The limitation of these
approaches is that they require expensive and complicated compu-
tations, and use biased lateral boundary inputs as the basis of their
simulations (Rocheta et al., 2014a), inputs that cannot be easily
bias corrected for use. On the other hand, most commonly used
and popular regression-based statistical downscaling approaches
are based on empirical and quantitative relationships developed
between a local hydro-climate variable and large-scale atmo-
spheric predictors developed by reanalysis data and GCMs. The
regression-based statistical downscaling is carried out in two main
steps: (i) deriving statistical relationships from historical climate
information and hydro-climate variables of interest (developing a
statistical model step), and (ii) using these models to project
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hydro-climate variables in the future, relying on the assumption
that current empirical models are applicable to GCM simulations
of the future (a projection step).

Bias correction has been shown to improve the quality of GCMs
for use in projecting hydro-climate variables under different cli-
mate change scenarios of the future (Mehrotra and Sharma,
2012; Ojha et al., 2013). Regarding the projection step of the statis-
tical downscaling, the accuracy of climate change simulations is
influenced by the similarity in the relationship between actual
atmospheric variables and observed rainfall, as compared to simu-
lated variables and the presumed projected rainfall. This similarity
is expected to be influenced by the biases that characterize the raw
GCM fields. Therefore, in the statistical downscaling processes an
initial post-processing correction must be carried out on GCM out-
puts representing the current climate, based on the statistical char-
acteristics of observations, to remove the difference between
observed and simulated large-scale atmospheric variables. The bias
correction model over a historical time period is assumed to be the
same in the future, and can thus be employed on future GCM sim-
ulations (Johnson and Sharma, 2015). In addition, anomalous
atmospheric circulation patterns influence the hydrological cycle
and large-scale atmospheric variables. Interannual and inter-
decadal variability in the large-scale climate modes are often not
well represented in GCM simulations (Rocheta et al., 2014b),
resulting in uncertainty and biases in projections of hydro-
climate variables relating to the future. Thus, raw GCMs must also
be corrected to capture the effect of low frequency variability of
teleconnections on large-scale atmospheric variables (Mehrotra
and Sharma, 2012).

It is therefore critical to identify the nature of these biases and
develop methods to address these sources of uncertainty. Several
bias correction approaches have been developed to quantify the
difference between observed (or reanalysis) data and large-scale
GCM-simulated variables and form the basis on which to correct
biases in both current and future atmospheric GCM simulations.
Commonly used bias correction procedures can be classified into
two main categories. The first relies on delta change and scaling
approaches, including quantile mapping, scaling, correction factor,
and transfer functions (a detailed review of the various methods
can be found in Johnson and Sharma (2012) and Fowler et al.
(2007)). All the methods in this category can be applied for post-
processing either on GCM variables or outputs of downscaling
models. Their main drawback is that they only take into account
biases in the distribution of GCM simulations rather than biases
in the representation of persistence and variability in simulations.
Current climate variability is thus assumed to remain the same in
the future. The second category involves approaches relying on sta-
tistical bias correction. Simple techniques in this category such as
Monthly Bias Correction (MBC) (Ojha et al., 2013) correct only sys-
tematic biases in the mean and variance of GCM-simulated vari-
ables or output of downscaled processes in an independent time
scale, ignoring the influence of regional and global teleconnection
signals. However, the impact of teleconnections on hydro-climate
variable behaviors in large scales makes it important to properly
represent the interannual and interdecadal fluctuation of climate
in the raw GCM outputs. To do so, Johnson and Sharma (2012)
developed a bias correction methodology by adding lag-1 correla-
tion to the procedure to correct the representation of low fre-
quency variability between GCM simulations and observed data.
The approach corrects the distributional and persistence GCM
biases from fine to progressively longer time series and is called
Nested Bias Correction (NBC). An extension of NBC was proposed
by Mehrotra and Sharma (2012) to enhance the representation of
variability at multiple time series by reducing biases through
repeating the nesting process several times (Recursive Nesting Bias
Correction, RNBC method).

One of the criticisms of bias correction is that the statistical cor-
rections do not maintain the physical relationships between differ-
ent climate variables (Ehret et al., 2012; Haerter et al., 2011;
Rocheta et al., 2014a). To overcome this problem Mehrotra and
Sharma (2015) developed a bias correction method that can con-
sider multiple variables and correct the cross correlations between
them over a range of time scales. The Multivariate Recursive Nest-
ing Bias Correction (MRNBC) extends the previous nesting bias cor-
rection approaches (Johnson and Sharma, 2012) and has been
shown to be effective at correcting predictors for statistical down-
scaling leading to improved downscaled simulations. An alterna-
tive implementation could include using multiple locations
rather than multiple variables to correct spatial as well as temporal
dependence in the GCM simulations.

After correcting the biases that characterize raw GCM simula-
tions, there remain a number of challenges in developing statistical
downscaling models, due to the complexity of the climate system.
Two main difficulties exist: (i) identification of the large-scale
atmospheric predictors conveying relevant climate change infor-
mation, and (ii) development of the right quantitative functional
relationship for capturing the complex nonlinearity between target
hydro-climate variables and atmospheric simulated predictors.
While the first of these problems is partly due to the high dimen-
sionality of the climate processes that lead to rainfall, the second is
due to poor characterization of the functional form. This paper
attempts to address both these limitations as discussed below.

To address the dimensionality problem in statistical downscal-
ing processes, many studies have used conventional unsupervised
dimensionality reduction methods, such as PCA, CCA, and cluster-
ing (Shashikanth et al., 2014; Tisseuil et al., 2010; Wójcik, 2015),
exploring a limited sequence of subspaces from the high dimen-
sional predictors to capture the maximum variability and the
covariance structure of data without taking into account the target
hydro-climate variable. These purely unsupervised techniques may
throw away low variations having high predictive potential for the
response variable, or keep high variance explanatory variables that
are irrelevant for the task at hand. A few attempts have also used
selective dimensionality-reduction methods, which cannot ade-
quately capture the nonlinearity and interaction properties of pre-
dictors (Ahmadi et al., 2015; Hammami et al., 2012). A supervised
dimensionality reduction method, called ‘‘Supervised Principal
Component Analysis”, was presented as an efficient alternative
by Sarhadi et al. (2015), illustrating significant improvements in
the downscaled rainfall field.

Due to the complex nonlinear relationship existing between
target hydro-climate variables and large-scale atmospheric vari-
ables, standard linear methods also fail to capture the nonlinear
functional relationship. Therefore, to address the second challenge
in developing a statistical modeling step, considerable attention
has been paid in the last few years to nonlinear-based soft comput-
ing data-driven regression models. Machine-learning methods
have gained more popularity for statistical downscaling modeling.
Among machine learning methods, Support Vector Regression
(SVR) has been widely employed in hydrology for nonlinear
stochastic modeling of different hydro-climatic variables (Chen
et al., 2012, 2010; Nasseri et al., 2013). In recent years, however,
a fully probabilistic Bayesian framework of the SVR known as Rel-
evance Vector Machine (RVM) has gained more popularity in
regression-based statistical modeling. Ghosh and Mujumdar
(2008) compared the results obtained from the SVR and RVMmod-
els for projection of streamflow in a statistical downscaling pro-
cess. They presented the advantages of the RVM over the SVR to
improve the model performance. In another attempt, the authors
also employed the RVM model with a fuzzy clustering method to
downscale GCM outputs for monsoon streamflow projections
(Mujumdar and Ghosh, 2008). Joshi et al. (2013) analyzed the
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