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s u m m a r y

Bayesian inference has traditionally been conceived as the proper framework for the formal incorporation
of expert knowledge in parameter estimation of groundwater models. However, conventional Bayesian
inference is incapable of taking into account the imprecision essentially embedded in expert provided
information. In order to solve this problem, a number of extensions to conventional Bayesian inference
have been introduced in recent years. One of these extensions is ‘fuzzy Bayesian inference’ which is
the result of integrating fuzzy techniques into Bayesian statistics. Fuzzy Bayesian inference has a number
of desirable features which makes it an attractive approach for incorporating expert knowledge in the
parameter estimation process of groundwater models: (1) it is well adapted to the nature of expert pro-
vided information, (2) it allows to distinguishably model both uncertainty and imprecision, and (3) it pre-
sents a framework for fusing expert provided information regarding the various inputs of the Bayesian
inference algorithm. However an important obstacle in employing fuzzy Bayesian inference in groundwa-
ter numerical modeling applications is the computational burden, as the required number of numerical
model simulations often becomes extremely exhaustive and often computationally infeasible. In this
paper, a novel approach of accelerating the fuzzy Bayesian inference algorithm is proposed which is
based on using approximate posterior distributions derived from surrogate modeling, as a screening tool
in the computations. The proposed approach is first applied to a synthetic test case of seawater intrusion
(SWI) in a coastal aquifer. It is shown that for this synthetic test case, the proposed approach decreases
the number of required numerical simulations by an order of magnitude. Then the proposed approach is
applied to a real-world test case involving three-dimensional numerical modeling of SWI in Kish Island,
located in the Persian Gulf. An expert elicitation methodology is developed and applied to the real-world
test case in order to provide a road map for the use of fuzzy Bayesian inference in groundwater modeling
applications.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

One of the key challenges routinely encountered in the estima-
tion of groundwater model input parameters is the lack of field
measurements. In real world studies, direct measurements of input
parameters such as hydraulic conductivity and transmissivity are
often inadequate to fully characterize the subsurface variability
(Carrera et al., 2005; Hassan et al., 2008), because the tests
required to determine these parameters are generally both time
consuming and expensive (Ross et al., 2007). Field data on state
variables such as groundwater heads and concentrations can be

employed to estimate model input parameters through inverse
modeling or model calibration, but field data on these state vari-
ables is often also insufficient due to the scarcity of boreholes.
One way out of this problem is to incorporate other available
sources of information which usually exist in the form of soft data
such as expert knowledge (Ross et al., 2009; Krueger et al., 2012).
The ability of experts to interpret complex and ambiguous evi-
dence in view of the broader experiences make their knowledge
an important and yet often untapped source of information
(O’Hagan, 2012).

A formal mechanism for the incorporation of expert knowledge
in parameter estimation is provided through Bayesian inference
(Coolen andNewby, 1994; Lele andDas, 2000). In this context, Baye-
sian inference enables the fusion of hard data resulting from field
measurement with soft data acquired through expert knowledge.
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This procedure is also called ‘Bayesian fusion’ (Khaleghi et al., 2013).
In Bayesian inference, the subjective belief of an individual expert or
the inter-subjective belief of several experts about the value of the
parameters is represented by the prior probability distributions
using expert elicitation methods (Beer et al., 2013; Rinderknecht
et al., 2014). These priors then enter a learning process inwhich they
are updated based on hard data, to obtain the posterior distributions
(Choy et al., 2009). The influence of expert knowledge on parameter
estimations decays with growing amount of hard data (Beer et al.,
2013). The Bayesian inference framework for the incorporation of
expert knowledge in parameter estimation has been previously
applied to modeling studies in hydrology, hydrogeology and water
resources management (e.g. Scholten et al., 2013, see Krueger
et al., 2012 for a review).

1.1. Shortcomings of the common approach

In practice, the conventional Bayesian inference has a number
of important shortcomings in the assimilation of expert knowl-
edge, which we review in the following. First, it has been argued
by many researchers (e.g. Coolen and Newby, 1994; Lele and Das,
2000; O’Hagan and Oakley, 2004; Lele and Allen, 2006;
Rinderknecht et al., 2012, 2014) that it is very difficult, and some-
times impossible, for experts to express their knowledge as proba-
bility distributions in a precise, clear and consistent way. The
reason is that expert knowledge often has the form of
imprecisely-defined and ambiguous terms and statements rather
than exact probability distributions (Li et al., 2013). So it would
be more acceptable to describe expert knowledge as intervals,
bounds or sets of probability distributions (Rinderknecht et al.,
2012). Moreover, using single probability distributions to describe
the intrinsically imprecise expert knowledge can bring new, faulty
and unwarranted assumptions to the parameter estimation pro-
cess (Lele and Allen, 2006; Stein et al., 2013). For example, assume
that the expert provides an interval [a, b] in which he ‘thinks’ that
the actual value of the parameter xmay occur, but has no reason to

believe that some of the values in the interval are more probable
than others. In this situation, it is standard practice to represent
the prior as a uniform probability distribution. However this prac-
tice has been shown by a number of studies (e.g. Journel, 1986;
Royall, 1997; Stein et al., 2013) to be a misrepresentation of elici-
tation results, because the bounds of the interval, a and b, are
assumed to be precise, neglecting the uncertainty of the expert
about the exact value of these bounds. Hence, assuming a uniform
prior implicitly ascribes more information than is actually given by
the expert provided information.

When expert knowledge is used in conjunction with actual
observations to build the prior, both uncertainty and imprecision
occur simultaneously. To highlight the difference between uncer-
tainty and imprecision, we briefly review the definition of the
two terms. Data is uncertain when the confidence degree of what
is stated by the data is less than one. In contrast, data is imprecise
if the implied attribute is not singular, but a well-defined or ill-
defined set or interval (Khaleghi et al., 2013). Hence data can be
uncertain yet precise, and vice versa. These two types are not dis-
tinguishable when both are represented by a single probability dis-
tribution and the contribution of each to the outcome of the
Bayesian inference procedure becomes unknown (Ross et al.,
2009). Distinction between uncertainty and imprecision is impor-
tant as it allows for proper guidance of the data collection
procedure.

In conventional Bayesian inference, expert knowledge can only
affect the parameter estimation process through the definition of
the prior distribution for the uncertain parameters. However in
many instances in groundwater modeling, the expert also has
other forms of knowledge apart from the possible values of the
uncertain parameters. This knowledge can be used to supplement
the available hard data in order to improve the precision of the
inference results. These other forms of knowledge may include
the following: (1) Hard data on state variables such as groundwa-
ter heads and concentrations may not be available in certain part of
the modeling domain, but the expert may have some knowledge of

Nomenclature

h uncertain input parameter(s)
x; xi data point/variable
cðxÞ fuzzy membership function of x
PðhÞ prior distribution
PðxjhÞ likelihood of the observations x given a parameter set h
PðxÞ proportionality constant
PðhjxÞ posterior distribution
b; b0, d; d0 fuzzy vectors
yðxÞ random variable representing the output quantity of

interest
n random variable
xi mode strength
wi mode function
q number of regression points for construction of polyno-

mial chaos expansions
r2
e error variance

Nx number of data points
MiðhÞ model output for the location of xi
h� proposal density in the Markov chain Monte Carlo algo-

rithm
h�� second stage proposal density in the Markov chain

Monte Carlo delayed rejection algorithm
Cov covariance
Sd scaling parameter
NMC maximum allowable length of the Markov Chain

aacceptance acceptance probability in the Markov chain Monte Carlo
algorithm

l mean
r standard deviation
j excess kurtosis
�ðÞ normalized deviations from the respective reference

solutions
d degree of polynomial chaos expansionsePðhjxÞ approximate posterior distributions
lpost mean of the posterior distributions
RMSEave average root mean square error
CI salinity concentrations in the monitoring points/wells
eðCIÞ Gaussian random noise
kH horizontal permeability of the aquifer in the circular is-

land test case
kV vertical permeability of the aquifer in the circular island

test case
kL permeability of the lower geological layer in the Kish Is-

land test case
kU permeability of the upper geological layer in the Kish Is-

land test case
aL longitudinal dispersivity
aT transverse dispersivity

256 M.M. Rajabi, B. Ataie-Ashtiani / Journal of Hydrology 536 (2016) 255–272



Download English Version:

https://daneshyari.com/en/article/6410025

Download Persian Version:

https://daneshyari.com/article/6410025

Daneshyari.com

https://daneshyari.com/en/article/6410025
https://daneshyari.com/article/6410025
https://daneshyari.com

