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s u m m a r y

The paper presents a second-order lattice Boltzmann method (LBM) for treating the wet–dry interface of
shallow water flows. This approach is improved according to the Chapman–Enskog analysis and the
Taylor expansion, which are used to set up the relation of the dry cell and its adjacent wet cell. The exter-
nal forces, such as bed friction and wind stress, are directly included in the wetting and drying boundary
treatment. However, the viscous effect cannot be absolutely removed, as the single relaxation time,
s > 0:5, should be retained for the reason of stability. In order to verify the scheme, two one-
dimensional (1D) and one two-dimensional (2D) numerical cases are carried out. The results indicate that
the approach is superior to the first-order scheme, comparing with the other numerical solutions and the
experimental data. It can be concluded that the proposed scheme is more accurate and effective in
simulating shallow water fronts.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Shallow water flows widely exist in nature, such as open chan-
nels, rivers, and estuaries. Such flows have the same characteristic
that the vertical scale is ordinarily much smaller compared with
the horizontal scale. Ignoring the vertical acceleration and under
the assumption of hydrostatic pressure, the shallow water equa-
tions can be derived from the incompressible Navier–Stokes equa-
tions. In order to solve these equations, many numerical methods
like the finite difference method (Casulli, 1990), the finite volume
method (Hu et al., 2000) and the finite element method (Leclerc
et al., 1990), have been proposed. Unlike the traditional numerical
approaches, which solve the shallow water equations based on the
direct discretizations of these equations, the lattice Boltzmann
method (LBM) lies in the description of the macroscopical fluid
flows from the microscopic flow behavior through particle distri-
bution functions. The LBM, originated from the lattice gas auto-
mata (Benzi et al., 1992) on the strength of easy programming,
inherent parallel features and effective treatment for complex
boundary conditions, has developed into an alternative approach
for simulating shallow water flows (Chen and Doolen, 1998;
Zhou, 2002; Dellar, 2002; Liu et al., 2010). In recent years, the
LBM has been successfully used for simulating a variety of

problems. O’Brien et al. (2002) used a modified lattice Boltzmann
scheme for reactive transport in porous media. Zhang et al.
(2005) presented a pore-scale modeling of soil hydraulic conduc-
tivity using the LBM and thin-section technique. Tubbs and Tsai
(2009) conducted the parallel computation for multi-layer shallow
water flows. Liu et al. (2015) developed the LBM for the Saint–
Venant equations.

Generally, the shallow water flow involves complex phenom-
ena, such as wave run-up and wave overtopping, which often lead
to wetting and drying boundary problem. It is easy to recognize
that with the movement of the wet–dry interface the computa-
tional domain changes constantly, which affects the accuracy of
calculation. Therefore, wet–dry boundary conditions have received
much attention. In the existing models, many kinds of wet and dry
processing methods were put forward. Madsen et al. (1997)
employed the permeable slot method (Tao, 1984), which tiled
the narrow water to shore beach based on the principle of water
balance. Sleigh et al. (1998) utilized an approximate Riemann
solver to determine flow directionality in conjunction with an
effective means of dealing with wetting and drying at the bound-
aries. Kennedy et al. (2000) improved the slot method, which
reduced the loss of water for populating the slit. Lynett et al.
(2002) presented a linear extrapolation scheme, which is a pure
mathematical method. van’t Hof and Vollebregt (2005) used the
artificial porosity method for wetting and drying in shallow water
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flow. Frandsen (2008) incorporated the thin film and the liner
extrapolation scheme to treat the wet–dry interface.

Even though there are many wet–dry treating methods, most of
them did not physically consider the external force terms. Clearly,
external forces such as bed friction and wind stress are very impor-
tant in simulations, which will influence the boundary movement
that directly affects the accuracy of the solution. Buick and Greated
(1999) considered the gravity using a lattice Boltzmann model. Liu
and Zhou (2014) proposed a new lattice Boltzmann approach to
simulating wetting and drying processes in shallow water flows,
straightly including external forces in simulation. However, the
treatment of the wet–dry interface in the approach is only first-
order accurate due to using first-order non-equilibrium part of par-
ticle distribution function. Therefore, the objective of the present
study is to further improve it to second-order accuracy. Two
benchmark tests are carried out, and the results are particularly
favorable compared with either experimental data or the
first-order solutions. This paper is organized as follows: Section 2
introduces the lattice Boltzmann model and the treatment of the
wet–dry boundary; Section 3 presents the verification and applica-
tion of the model; Section 4 gives conclusions.

2. Theoretical background

2.1. Lattice Boltzmann model for shallow water equations

The lattice Boltzmann method involves two steps, i.e. the
streaming step and the collision step. In the streaming step, the
particles move to the neighboring lattice points in their velocities
governed by (Zhou, 2004)

f aðxþ eaDt; t þ DtÞ ¼ f 0aðx; tÞ þWa
Dt

C2
s

eaiFiðx; tÞ ð1Þ

where f a is the particle distribution function; f 0a is the value of f a
before the streaming; e ¼ Dx=Dt; Dx is the lattice size; Fi is the force
term in the i direction; Dt is the time step; for the one-dimensional
(1D) based on D1Q3 lattice (see Fig. 1a), e0 ¼ 0; e1 ¼ e and e2 ¼ �e;
and for the two-dimensional (2D) based on D2Q9 lattice (see
Fig. 1b), ea is defined as Table 1; Cs is the local sound speed, given
as Eq. (2); Wa is the weight coefficient, being 1/4 for D1Q3 lattice,
and is shown as Eq. (3) for D2Q9 lattice.
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In the collision step, f 0a can be written as

f 0aðx; tÞ ¼ f aðx; tÞ �
1
s
ðf a � f eqa Þ; ð4Þ

where f eqa is the local equilibrium distribution function, s is the
single relaxation time. If f eqa for D1Q3 lattice is written as
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and for D2Q9 lattice

f eqa ¼
h� 5gh2
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the nonlinear shallow water Eqs. (7) and (8) can be recovered by
using the Chapman–Enskog procedure (Zhou, 2004).
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In the above equations, the Cartesian coordinate system and the
Einstein summation convention over Latin indices are used; m is
the kinematic viscosity of water defined as

m ¼ e2Dt s� 1
2

� �
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Fig. 1. Lattice patterns.

Table 1
The velocity vector for D2Q9 lattice.

a 0 1 2 3 4 5 6 7 8

eax 0 e e 0 �e �e �e 0 e
eay 0 0 e e e 0 �e �e �e
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