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s u m m a r y

Sparse grid (SG) stochastic collocation methods have been recently used to build accurate but cheap-to-
run surrogates for groundwater models to reduce the computational burden of Bayesian uncertainty
analysis. The surrogates can be built for either a log-likelihood function or state variables such as hydrau-
lic head and solute concentration. Using a synthetic groundwater flow model, this study evaluates the
log-likelihood and head surrogates in terms of the computational cost of building them, the accuracy
of the surrogates, and the accuracy of the distributions of model parameters and predictions obtained
using the surrogates. The head surrogates outperform the log-likelihood surrogates for the following four
reasons: (1) the shape of the head response surface is smoother than that of the log-likelihood response
surface in parameter space, (2) the head variation is smaller than the log-likelihood variation in param-
eter space, (3) the interpolation error of the head surrogates does not accumulate to be larger than the
interpolation error of the log-likelihood surrogates, and (4) the model simulations needed for building
one head surrogate can be recycled for building others. For both log-likelihood and head surrogates,
adaptive sparse grids are built using two indicators: absolute error and relative error. The adaptive head
surrogates are insensitive to the error indicators, because the ratio between the two indicators is hydrau-
lic head, which has small variation in the parameter space. The adaptive log-likelihood surrogates based
on the relative error indicators outperform those based on the absolute error indicators, because adapta-
tion based on the relative error indicator puts more sparse-grid nodes in the areas in the parameter space
where the log-likelihood is high. While our numerical study suggests building state-variable surrogates
and using the relative error indicator for building log-likelihood surrogates, selecting appropriate type of
surrogates and error indicators depends on the shapes of response surfaces. The shapes should be approx-
imated and examined before building sparse grid surrogates.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Uncertainty analysis has become a common practice in ground-
water modeling in the last several decades for evaluating model
predictive performance, improving model structures, and support-
ing science-informed decision-making (Gupta et al., 2012; Matott
et al., 2009; Tartakovsky, 2013). Among various methods devel-
oped for uncertainty analysis, Bayesian approaches are one of the
most popular methods. However, in comparison with other meth-
ods of uncertainty analysis that are computationally frugal (Hill
et al., 2015), Bayesian approaches are computationally expensive,
because they always involve Markov chain Monte Carlo (MCMC)
simulations, in which tens to hundreds of thousands of model

executions are necessary for estimating the probability distribu-
tions of model parameters and predictions. To alleviate the com-
puting burden, one solution is to replace a model by its surrogate
that is sufficiently accurate but computationally cheap, and a
review article of surrogate modeling is given by Razavi et al.
(2012). Among various methods of building surrogates, the sparse
grid (SG) stochastic collocation methods are used in this study.
Although the SG methods have become popular, using them for
Bayesian uncertainty quantification has been reported only in a
limited number of groundwater studies (Zeng et al., 2012; Zhang
et al., 2013, 2015). In other uses of SG methods (e.g., Lin and
Tartakovsky, 2009, 2010; Lin et al., 2010; Shi and Yang, 2009;
Zhang et al., 2010; Dai and Ye, 2015), SG methods are used to
estimate the distributions or moments (e.g., mean and covariance)
of groundwater state variables (e.g., hydraulic head and solute
concentration). These studies assumed known parameter
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distributions, and did not estimate the distributions using Bayesian
approaches.

This study investigates an important problem for SG-based
Bayesian uncertainty quantification, i.e., how to evaluate the like-
lihood function used in Bayesian inference. Consider a Bayesian
inference problem for a nonlinear model, f, used to simulate state
variables (e.g., hydraulic head and solute concentration),

d ¼ f ðhÞ þ e ð1Þ
where d is a vector dataset of state variable, h is a vector of model
parameters, and e is a vector of residuals that may include errors
in data, model parameters, and model structures. The goal of Baye-
sian inference is to estimate the posterior distributions, p(h|d), of
model parameters, h, given data, d, using Bayes’ theorem (Box and
Tiao, 1992)

pðhjdÞ ¼ LðhjdÞpðhÞR
LðhjdÞpðhÞdh ð2Þ

where p(h) is the prior distribution and L(h|d) is the likelihood func-
tion to measure goodness-of-fit between model simulations, f(h),
and data, d. The prior distribution can be specified using data from
previous studies or expert judgment. When prior information is
lacking, a common practice is to assume uniform distributions with
relatively large parameter ranges so that the prior distributions do
not affect the estimation of posterior distributions. Defining a like-
lihood function appropriate to a specific problem is still an open
question, and it has been shown that the likelihood function has
substantial impacts on the results of Bayesian inference (Evin
et al., 2014; Lu et al., 2013; Schoups and Vrugt, 2010; Shi et al.,
2014; Smith et al., 2010). While SG methods can work with various
likelihood functions (Zhang et al., 2013), this study uses the com-
monly used Gaussian likelihood function,

LðhjdÞ ¼ 1

ð2pÞN=2jRj1=2
exp �1

2
ðd� f ðhÞÞTR�1ðd� f ðhÞÞ

� �
; ð3Þ

where N is the number of data (i.e., the dimension of d), and
P

is
the covariance matrix of the residuals, e. Because analytical expres-
sions for p(h|d) are unavailable for nonlinear models, Markov chain
Monte Carlo (MCMC) methods are often used for estimating p(h|d).
In MCMC, a large number (tens to hundreds of thousands) of param-
eter samples are drawn; for each sample, the nonlinear function,
f(h), and the likelihood function, L(h|d), are evaluated. If the nonlin-
ear function is computationally expensive, the computational cost
for the Bayesian inference may be unaffordable. This necessitates
the use of SG surrogates.

In SG applications for Bayesian inference, two kinds of SG surro-
gates have been used. One is for the logarithm of the likelihood
function used to directly replace L(h|d) during Bayesian inference;
the other is for the state variables used to replace f(h) for evaluat-
ing the likelihood. Building the state variable surrogates is com-
mon in the literature of not only SG collocation (Ma and Zabaras,
2009b; Zeng et al., 2012; Zhang et al., 2015) but also other stochas-
tic collocation methods of Bayesian inference (Marzouk et al.,
2007; Marzouk and Xiu, 2009; Liao and Zhang, 2013; Laloy et al.,
2013). While building log-likelihood surrogates is less common
(Zhang et al., 2013), it is theoretically superior to building state-
variable surrogates for two reasons. First, only one log-likelihood
surrogate is needed regardless of the number of observations,
whereas one state-variable surrogate is needed for each observa-
tion. When the number of observations is large, the computational
cost of building multiple state-variable surrogates can be signifi-
cantly higher than that of building a single log-likelihood surro-
gate. In addition, each state-variable surrogate has its SG
interpolation error, and the error may accumulate and become

large when the surrogates are used for evaluating the likelihood
function. However, building the log-likelihood surrogates has its
own disadvantages as discussed in the numerical example below.
It is therefore necessary to evaluate the two kinds of surrogates
to determine which kind of surrogate is more appropriate for Baye-
sian inference.

To the best of our knowledge, there has been no reported refer-
ence on comparing the state-variable surrogates and the log-
likelihood surrogates. The study of Petvipusit et al. (2014) is the
only reference related to the comparison that we are aware of.
The study compared two surrogates used for optimization of CO2

sequestration. One surrogate was built for a break-even tax credit
function, and the other for the moments (i.e., mean and variance)
of the function. The comparative study of Petvipusit et al. (2014)
showed that building the moment surrogate is computationally
more efficient than building the function surrogate. However, their
study is irrelevant to comparison between the log-likelihood and
state-variable surrogates. The two kinds of surrogates are com-
pared in this study in terms of accuracy and efficiency. The accu-
racy is evaluated by comparing the posterior distributions
obtained using the two kinds of surrogates with the reference dis-
tributions obtained using the original model without any surro-
gates. The computational efficiency is evaluated by directly
comparing the number of model executions needed for building
the log-likelihood and state-variable surrogates. The comparative
evaluation is done by conducting a numerical study for a synthetic
groundwater flow model. The conclusions drawn from the syn-
thetic study through the quantitative and comprehensive evalua-
tions are expected to be applicable to other groundwater studies,
given that the complexity of the synthetic model is representative
for groundwater modeling.

This study also addresses another important issue for building
adaptive SG, i.e., whether absolute or relative error should be used
as the indicator for adaptation. Building adaptive SG is common for
saving computational cost by adding SG nodes only in the areas
where SG interpolation error is larger than a user-specified toler-
ance value (Barthelmann et al., 2000; Klimke, 2006; Ma and
Zabaras, 2009a; Pfluger, 2010; Zhang et al., 2013). The absolute
error (difference between a model simulation and its surrogate)
is the interpolation error itself, and has been used widely (Ma
and Zabaras, 2009a, 2009b; Stoyanov, 2013a, 2013b; Webster
et al., 2014; Zeng et al., 2012; Zhang et al., 2013), because it
directly controls SG accuracy. However, it should be noted that
having an accurate SG surrogate is insufficient to having an accu-
rate Bayesian inference, i.e., obtaining accurate posterior parame-
ter distributions. For example, adding adaptive SG points in low
likelihood regions to reduce SG error is useless to Bayesian infer-
ence, because only parameter samples generated from high likeli-
hood regions are accepted during MCMC simulation; this is
demonstrated below using the numerical examples based on the
synthetic groundwater model. The key question is where to add
adaptive SG nodes in Bayesian inference, and this problem is
resolved empirically in this study by using relative error, i.e., abso-
lute error divided by the model simulation. We explore whether
the relative error outperforms the absolute error by using both
absolute and relative error indicators to build adaptive log-
likelihood and state-variable surrogates. As discussed below in
Section 4, the two error indicators lead to significantly different
SG node locations when building the log-likelihood surrogates,
but not the case when building the state-variable surrogates. As
a result, the two error indicators have substantial impacts on the
accuracy of estimating the posterior distributions of model param-
eters and predictions.

It should be noted that this study is focused on using SG for
Bayesian uncertainty quantification; other uses of SG are beyond
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