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s u m m a r y

A baseflow separation model called meteorology-corrected nonlinear reservoir algorithm (MNRA) was
developed by combining nonlinear reservoir algorithm with a meteorological regression model, in which
the effects of meteorological factors on daily baseflow recession were fully expressed. Using MNRA and
the monitored data of daily streamflow and meteorological factors (including precipitation, evaporation,
wind speed, water vapor pressure and relative humidity) from 2003 to 2012, we determined the daily,
monthly, and yearly variations in baseflow from ChangLe River watershed, a typical rainy agricultural
watershed in eastern China. Results showed that the estimated annual baseflow of the ChangLe River
watershed varied from 18.8 cm (2004) to 61.9 cm (2012) with an average of 35.7 cm, and the baseflow
index (the ratio of baseflow to streamflow) varied from 0.58 (2007) to 0.74 (2003) with an average of
0.65. Comparative analysis of different methods showed that the meteorological regression statistical
model was a better alternative to the Fourier fitted curve for daily recession parameter estimation.
Thus, the reliability and accuracy of the baseflow separation was obviously improved by MNRA, i.e.,
the Nash–Sutcliffe efficiency increased from 0.90 to 0.98. Compared with the Kalinin’s and Eckhardt’s
recursive digital filter methods, the MNRA approach could usually be more sensitive for baseflow
response to precipitation and obtained a higher goodness-of-fit for streamflow recession, especially in
the area with high-level shallow groundwater and frequent rain.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Baseflow is commonly defined as the water that sustains flow in
a river during low-flow periods, and it is an important component
of streamflow during high-flow conditions, which originates from
groundwater and other delayed shallow subsurface flow into the
stream (Hall, 1968; Smakhtin, 2001; Cherkauer and Ansari, 2005;
Santhi et al., 2008). Determining the baseflow component and
understanding the interaction between surface water and ground-
water play a crucial role in water resources and water quality man-
agement (Eckhardt, 2008; Ahiablame et al., 2013), in the control of
river algal blooms and salinity (Santhi et al., 2008), and in calibrat-
ing and validating hydrological models (Cao et al., 2006; Vázquez
et al., 2008; Ferket et al., 2010). However, no direct approach exists
for continuously measuring the baseflow (Lin et al., 2007) and the
variability of its recession under different conditions (Datta et al.,
2011) because it is usually affected by diverse climatological,

morphological, and geological factors, with considerable variations
in time and space (Singh, 1968). Although growing numbers of
field-indirect determination methods (temperature, artificial, and
natural tracer concentrations, stream-bed seepage meter, and
others) have been used to quantify the baseflow in a relatively
short period (Cook et al., 2003, 2008; Becker et al., 2004;
Meredith and Kuzara, 2012), baseflow separation remains ‘‘one of
the most desperate analysis techniques in use in hydrology”
because such methods are labor-intensive and are difficult to apply
continuously for long periods (Huyck et al., 2005; Longobardi and
Villani, 2008).

Consequently, some alternative methods are developed for
baseflow estimation, such as the hydrograph method and digital
filtering approaches. For the hydrograph method, the main defect
of such a type of baseflow separation is either physically not
well-founded or might be subjective to varying degrees
(Tallaksen, 1995). The digital filtering approaches for baseflow sep-
aration are generally not physically based to a certain degree as
well, but they are easier, faster, and more objective to apply to long
time series of discharge than graphical methods. For instance,
smoothedminima approaches (low-pass filters) based on the ‘‘time
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of the cessation of runoff” (Pettyjohn and Henning, 1979) are
developed to estimate baseflow in the long term, which is used
in the models of the Hydrograph Separation Program (Sloto and
Crouse, 1996; Brandes et al., 2005; Eckhardt, 2008), the BFI
(Wahl and Wahl, 1988; Piggott et al., 2005), and the recursive dig-
ital filter algorithm (Lyne and Hollick, 1979; Nathan and McMahon,
1990; Arnold and Allen, 1999; Chapman, 1999; Eckhardt, 2005).
However, one obvious flaw of the smoothed minima approaches
is that the characteristic points of a hydrograph are connected with
straight lines, thereby immediately giving the impression of an
unrealistic baseflow progression (Eckhardt, 2008). Although the
recursive digital filters, by contrast, provide an extensively smooth
time series of baseflow that seems to be more plausible according
to hydrology, they still make the physics behind baseflow
estimation particularly during rising periods of streamflow
because of the calibration on which they heavily rely (Furey and
Gupta, 2001).

To overcome the subjective elements in earlier simpler filters
and to alleviate some of their simplified assumptions, physically
based mathematical filters for continuous baseflow separation
are developed based on a linear reservoir expression together with
the Boussinesq-derived (Huyck et al., 2005) or hill slope mass-
balance equations (Furey and Gupta, 2001, 2003) for the confined
aquifer watershed condition. Nevertheless, the algorithm of a sin-
gle linear reservoir can be satisfactorily fitted to shorter recessions
only (Chapman, 1999; Wittenberg, 1999). In most cases, the shal-
low groundwater aquifers of rivers are predominantly unconfined;
thus, the recession curves for such watersheds can be effectively
modeled by using the nonlinear groundwater storage–outflow
model (Eq. (2)) rather than the linear one (Wittenberg, 1999).
The nonlinear reservoir algorithm based on the assumption of non-
linear storage–discharge relationships has also been developed and
applied to baseflow separation recently. Compared with some tra-
ditional low-pass filters, the consideration of the seasonal variation
in recession parameters (commonly described using the Fourier
function, e.g., Aksoy and Wittenberg, 2011; Datta et al., 2011) in
nonlinear reservoir algorithm is an obvious improvement in base-
flow separation.

However, estimating the recession parameters used for base-
flow separation based on nonlinear reservoir algorithm is still con-
fined to several typical recessions (Wittenberg, 1999) or on a
monthly basis (Aksoy and Wittenberg, 2011) without sufficiently
considering the effects of meteorological factors on baseflow reces-
sion, thereby leading to uncertainty in baseflow estimation during
non-recession periods. Thus, the main objective of the present
study is to construct a statistical regression model based on certain
meteorological factors for daily recession parameter estimation in
both recession and non recession periods to reduce the uncertainty
in the baseflow estimation by nonlinear reservoir algorithm. The
Kalinin’s method (Chen et al., 2008) and the recursive digital filter
of Eckhardt (2005) are also used to compare and evaluate the per-
formance of the nonlinear reservoir algorithm baseflow estimation
based on daily recession parameter.

2. Material and methods

2.1. Study area

The ChangLe River watershed (120�350E–120�490E and 29�270

N–29�350N) is located in the Ningshao Plain of eastern Zhejiang
Province, southeast China (Fig. 1). As one of the main tributaries
of the Cao-E River, the ChangLe River system ultimately flows into
the Qiantang Estuary and East China Sea; it flows to approximately
70.5 km with 0.36% of gradient sandy-gravel riverbed and 40–70 m
width, draining a total area of 864 km2. The altitude of ChangLe

River watershed is ranged from 15.4 to 1094.4 m, with an average
of 259.3 m. The study area represents a typical agricultural water-
shed in southeast China, with an evident subtropical monsoon cli-
mate (Chen et al., 2009). The annual and monthly average
meteorological data in the ChangLe River watershed from the year
of 2003 to 2012 were given in Table 1 and Supplementary Fig. S1,
respectively. The long-term average annual precipitation is
1228 mm, with 45.2–68.7% of rainfall usually occurring from May
to September in 2003–2012 for the catchment recorded at the
weather station in Shengzhou City. Approximately 74.9%
(920 mm) of average annual precipitation is returned to the atmo-
sphere through evaporation. There has not been any snow during
the period of 2003–2012 in the ChangLe River watershed. The aver-
age annual runoff is 55.08 cm, with monthly variations ranging
from 2.43 to 9.79 cm. The primary land-use categories are wood-
land and farmland (including paddy fields, uplands, and garden
plots), with an average of �48.6% and �41.9% of total watershed
area, respectively.

2.2. Data collection

The continuous daily stream discharges at the monitoring site
(Yazhi, Fig. 1) from 2003 to 2012 were supplied by the Zhejiang
Provincial Government Hydrology Office. The corresponding daily
meteorological data for the study area were obtained from the
Shengzhou Weather Bureau and the China Meteorological Data
Center.

2.3. Recession analysis and parameter calibration

The concrete process of recession analysis and parameters (‘‘a”
and ‘‘b”) calibration of nonlinear reservoir algorithm is shown in
Fig. 2. The recession representative curves extracted from the daily
streamflow data should satisfy both of the following criteria to
minimize the uncertainty caused by recession analysis as much
as possible. Once the selection of representative recession curves
completed, parameter ‘‘a” and ‘‘b” can be calibrated using an iter-
ative least-squares method.

(i) According to the empirical equation (N = 0.83A0.2, where N is
the time, in days after a peak value of baseflow discharge,
and A is the drainage area in km2) (Linsley et al., 1949;
Halford and Mayer, 2000), the point along the falling limb
of a flood hydrograph event was determined. For this study,
Nwas calculated as 4 days; therefore, each of the streamflow
data yk and yk+1 would be considered, which were part of a
recession period of at least five days, i.e., it must be yk�3 >
yk�2 > yk�1 > yk > yk+1 > yk+2 (Eckhardt, 2008). The minimum
length of the extracted flow data is 5 days (Aksoy and
Wittenberg, 2011).

(ii) The extracted flow sequence for recession analysis in step (i)
was further verified by the method of nonlinear reservoir
algorithm fitting. The corresponding coefficient of variation
(CV) (defined in Eq. (1), Aksoy and Wittenberg (2011))
between the observed records (Q) and the fitted values
(Qcalc) was calculated. If the CV for fitting a flow recession
was less than 0.1, then these data could represent a ‘‘real”
baseflow recession, which will be used for the subsequent
parameter estimation.

CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

n� 1

Pn
i¼1ðQðiÞ � QcalcðiÞÞ2

ðPn
i¼1ðQðiÞÞÞ2
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