
A coupled stream flow and depth-integrated subsurface flow model for
catchment hydrology

Yi Pan, Sylvain Weill, Philippe Ackerer, Frederick Delay ⇑
Laboratoire Hydrologie et Géochimie de Strasbourg, Univ. Strasbourg/EOST/ENGEES, CNRS UMR 7517, 1 rue Blessig, 67084 Strasbourg, France

a r t i c l e i n f o

Article history:
Received 7 July 2015
Received in revised form 8 September 2015
Accepted 18 September 2015
Available online 28 September 2015
This manuscript was handled by Peter K.
Kitanidis, Editor-in-Chief, with the
assistance of Christophe Darnault, Associate
Editor

Keywords:
River–aquifer interactions
First-order coupling
Richards equation
Diffusive wave equation
Stream network
Integrated hydrological model

s u m m a r y

Few hydrological models that couple stream flow and subsurface flow in shallow aquifers are based on a
compromise between simple and complex depiction of the system, although this compromise could
result in tractable tools for various applications. We present a depth-integrated approach in which flows
in the vadose and saturated zones are assumed to be parallel to the bottom of the aquifer and thus are
integrated in the direction normal to the bottom of the aquifer. The hydrodynamic parameters are also
integrated in this direction, and gravity effects are preserved. Stream flow is handled by a diffusive-
wave equation that is calculated over a network of one-dimensional bonds. The first-order coupling
between the stream and subsurface flows exchanges water fluxes between the stream network and
the subsurface compartment according to the hydraulic head differences between the systems. Three
synthetic test cases, one including a comparison with a three-dimensional code, are used to evaluate
the general behavior of the coupled model. It is shown that the approach reproduces the main hydrolog-
ical features at the catchment scale, including the generation of runoff, infiltration–exfiltration into
(from) the vadose zone, and smooth transient head variations in the aquifer.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Stream flow and subsurface flow are linked components of the
continental hydrological cycle whose interactions strongly impact
the response of hydrologic systems to atmospheric forcing (Winter
et al., 1998; Sophocleous, 2002). The interactions between stream
and subsurface flows are complex because of the controls exerted
by topographic, geologic, and pedologic features (e.g., Anderson
and Burt, 1978; Dunne et al., 1991; Torres et al., 1998; Freer
et al., 2002; van Meerveld et al., 2007; Penna et al., 2011). These
interactions have been investigated through experimental and
numerical studies over wide ranges of time and spatial scales
and for many hydrological systems (e.g., Harvey and Bencala,
1993; Cloke et al., 2006; Fiori et al., 2007; Storey et al., 2003;
Partington et al., 2013). Nonetheless, how the coupling between
stream and subsurface flows impacts the hydrodynamics of natural
underground reservoirs, runoff and river dynamics is not yet fully
understood (e.g. McDonnell et al., 2010). Therefore, it is critical to
better understand the interplay between surface and subsurface
processes for ongoing hydrologic research and applications to

water resources management and water quality (Fleckenstein
et al., 2010).

Although the development of new techniques and the reliability
of data have improved field studies in recent years, experimental
investigations are still insufficient to fully describe the generation
of stream flow mechanisms. Integrated hydrologic modeling (with
the meaning of including both surface and subsurface compart-
ments in the same modeling tool) is a valuable complement to field
and laboratory experiments due to its ability to provide insights
into flow and transport mechanisms at different scales (e.g.,
Goderniaux et al., 2009; Frei et al., 2010; Weill et al., 2013; Hunt
et al., 2013). Implementing the interactions between stream and
subsurface flows in hydrologic models is often complicated
because of the non-linear nature and the different time scales of
the mechanisms involved in the flow process (Spanoudaki et al.,
2009). Thus, stream and subsurface flows were either oversimpli-
fied or loosely coupled (i.e., relying upon a single relationship) in
hydrological models until the late 1990s, when the so-called
integrated hydrological models were developed. These models
were braking from previous approaches in being spatially
distributed, in solving the physics of flow–transport processes,
and in coupling surface and subsurface compartments of a
watershed (Furman, 2008).
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Integrated hydrological models are intended to describe the
relationships within the hydrological cycle using mechanisms that
are represented in a physically relevant way. For example, the
models solve the partial differential equations of mass and
momentum conservation to simulate water flow and transport in
the different compartments of the hydrologic system, such as the
land surface, vadose zone and saturated zone. The equations, their
dimensionality and the numerical techniques used to solve the
equations result in different types of models (Kampf and Burges,
2007). The most detailed models rely on the solution to the
three-dimensional Richard’s equation for subsurface flow and on
approximations of the Saint Venant equations – a kinematic or a
diffusive wave equation – for stream flow (e.g., VanderKwaak,
1999; Panday and Huyakorn, 2004; Camporese et al., 2010). The
first tests carried out with these detailed models appear promising
(e.g., Ebel et al., 2008; Frei et al., 2010) and demonstrate the utility
of these models for improving our understanding of flow and
transport processes in hydrologic systems. Despite their appealing
characteristics, the application of these detailed models to natural
systems faces significant challenges with time and space dis-
cretization issues, computational cost, the scarcity of available data
for calibration and validation, and parameterization issues (e.g.,
Ebel and Loague, 2006; Mirus et al., 2011; Sulis et al., 2011). These
difficulties raise the question of the optimal complexity of the
equations and their dimensionality that are needed for reliable
and efficient simulations of hydrological catchments (Gunduz
and Aral, 2005).

Few models have been developed between the detailed inte-
grated tools, which require efficient numerical methods and heavy
computations, and simple approaches, which cannot describe the
key factors of stream flow generation because of oversimplified
equations and the incorrect dimensionality of the problem. This
paper proposes an alternative modeling approach that couples a
one-dimensional diffusive wave equation in a ramified stream net-
work to depict the surface flow with a depth-integrated Richard’s
equation for the subsurface flow. The relationship between these
equations is established via the so-called first-order coupling tech-
nique. The depth-integrated subsurface model mimics the lateral
transfers that are associated with topographic and pressure head
variations in both the vadose and saturated zones without needing
a full three-dimensional approach. The principle is to map the
effects of topographic slopes onto a discretized two-dimensional
layer. At the element level of the discretized domain, the vertical
component of water movement is assumed to be significantly
smaller than the lateral flow. The components of the gravity accel-
eration vector may also change from element to element to
account for variations in the mean slope between elements. Sub-
surface flow is represented through the computation of vertically
averaged conductivity, storage capacity and water content using
the characteristics of both the vadose zone and the aquifer.

The governing equations of the modeling approach are
described in Section 2, while the details of the numerical imple-
mentation are presented in Appendix A. Section 3 reports on a test
of the one-dimensional stream network model alone. Then, stream
flow and subsurface flow are coupled and compared with the full
three-dimensional approach of the CATHY model (Camporese
et al., 2010). Section 4 is dedicated to the application of the
reduced model (stream network plus subsurface compartment)
over an actual hilly catchment with steep topography. This topog-
raphy is very demanding in terms of space and time discretization
for three-dimensional approaches as that in CATHY (or in other
fully-dimensioned approaches). This feature justifies that we do
not perform any comparison between models on the hilly catch-
ment. Notably, all the tests are designed as synthetic exercises that
reproduce simple to complex watershed geometries and hydrolog-
ical behaviors.

2. Mathematical model

2.1. Stream flow model

The stream flow model is derived from the simplified form of
the Saint Venant equations (e.g., Panday and Huyakorn, 2004) that
are written as the one-dimensional propagation of a diffusive wave
(Govindaraju and Kavvas, 1990). We assume that a mean water
velocity ux (LT�1) in the direction x normal to the flow section of
the river can be defined. The x direction is not fixed in space and
follows the main slope of the river bed. Under these conditions,
the mass balance (1a) and momentum conservation (1b) equations
can be written as

@A
@t

þrx � ðAuxÞ ¼ l0q ð1aÞ
@ux

@t
þ ux

@juxj
@x

þ jgjrxhr ¼ �jgjðrxzþ sf Þ � q
hr

ux ð1bÞ

A (L2) is the area of the water section in the river normal to the x
direction, hr (L) is the water level in the river, l0 (L) is the width of
the water surface in the river, z (L) is the elevation of the river bot-
tom, q (LT�1) is a source term percolating through the banks and the
bottom of the river, jgj (LT�2) is the scalar component of the gravity
acceleration, and sf (–) is the vector of the frictional slope of the
river along the x direction.

Assuming slow variations in the flow regime cancels out the
term d=dt ¼ @=@t þ u@=@x in (1b). With negligible lateral fluxes q
compared with the fluxes along the main direction of the river
bed, the momentum Eq. (1b) simplifies into

rxðhr þ zÞ ¼ �sf ð2Þ
The friction slope sf allows reintroducing the velocity ux in (2)

by means of the Manning formula

ux ¼ R2=3
h

NMan
s1=2f ð3Þ

where NMan (L�1/3T) is the Manning coefficient, and Rh (L) is the
hydraulic radius (see below).

The river cross-section (Fig. 1) is assumed to have a trapezoidal
shape that may vary along the river profile. The width of the water
surface l0 and the water surface area A are therefore determined by
the local (in x) values of the water level hr, the bottom width l of
the river and the slope a of the river bank

Fig. 1. Stream/ditch geometry and associated parameters; hr and hg represent the
heads in the river and the aquifer, respectively. zr is the elevation of the river
bottom, zb is the reference elevation, l0 is the width of the water surface, h is the
water level, l is the bottom width of the river, a is the slope of the river bank, wr is
the wetted perimeter of the river bed, and mr is the sediment thickness at the
bottom of the river.
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