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s u m m a r y

A detailed understanding of soil hydraulic properties, particularly soil available water content (AWC)
within the effective root zone, is needed to optimally schedule irrigation in fields with substantial spatial
heterogeneity. However, it is difficult and time consuming to directly measure soil hydraulic properties.
Therefore, easily collected and measured soil properties, such as soil texture and/or bulk density, that are
well correlated with hydraulic properties are used as proxies to develop pedotransfer functions (PTF). In
this study, multiple modeling scenarios were developed and evaluated to indirectly predict high resolu-
tion AWC maps within the effective root zone. The modeling techniques included kriging, co-kriging,
regression kriging, artificial neural networks (NN) and geographically weighted regression (GWR). The
efficiency of soil apparent electrical conductivity (ECa) as proximal data in the modeling process was
assessed. There was a good agreement (root mean square error (RMSE) = 0.052 cm3 cm�3 and r = 0.88)
between observed and point prediction of water contents using pseudo continuous PTFs. We found that
both GWR (mean RMSE = 0.062 cm3 cm�3) and regression kriging (mean RMSE = 0.063 cm3 cm�3) pro-
duced the best water content maps with these accuracies improved up to 19% when ECa was used as
an ancillary soil attribute in the interpolation process. The maps indicated fourfold differences in AWC
between coarse- and fine-textured soils across the study site. This provided a template for future inves-
tigations for evaluating the efficiency of variable rate irrigation management scenarios in accounting for
the spatial heterogeneity of soil hydraulic attributes.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Across the globe, water has become the most valuable input for
agriculture. The growing demand for food and fiber production
along with uncertainties in rainfall patterns has resulted in
increased attention on irrigation practices. If field-level spatial soil
variation is substantial, variable rate irrigation becomes a desirable
method to apply an optimum amount of water to each soil type in
order to maximize yield. Duncan (2012) conducted a two-year cot-
ton irrigation study and showed that the optimum supplemental
irrigation strategy was different among plots with high, moderate

and low water holding capacity (WHC). He emphasized that in the
long term it is not possible to maximize yield with a uniform sup-
plemental irrigation strategy in fields with a significant degree of
heterogeneity in soil available water content (AWC).

Soil hydraulic information is required for the majority of
agro-hydrological studies and irrigation management including
providing essential inputs for irrigation, drainage, and hydrological
models. The main goal of these endeavors is to account for the spa-
tial heterogeneity of these hydraulic properties by mapping their
spatial distribution at high resolution. However, obtaining infor-
mation on soil hydraulic properties such as soil water retention
and hydraulic conductivity is challenging due to the time-
consuming and labor-intensive nature of in situ and laboratory
methods. The traditional solution to this problem was to develop
proxies of soil hydraulic properties by collecting easily measured
soil characteristics such as texture, bulk density, and organic mat-
ter content that are well correlated with soil hydraulic properties
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to produce pedotransfer functions (PTFs, Bouma, 1989). Another
easily collected soil attribute is apparent electrical conductivity
(ECa), which is a function of the electrical conductivity of porous
media solution, the soil porosity, and the cementation exponent,
i.e., Archie’s law (Archie, 1942). When soil salinity is not a major
factor, ECa may be a useful proxy of soil physical and hydraulic
attributes (Sudduth et al., 2005) including depth to sand layer
(Duncan, 2012), clay percentage under non-saline conditions
(Saey et al., 2009), and soil texture and WHC (Abdu et al., 2008).
Abdu et al. (2008) predicted WHC in the subsurface soil of a small
watershed using ECa data. Their PTFs for clay percentage (r = 0.86)
and WHC (r = 0.75) showed good performance, but they empha-
sized the need for additional studies to appropriately relate ECa

to other soil hydraulic attributes, a goal of this particular study
(Abdu et al., 2008).

PTFs were initially derived using multiple regression tech-
niques, but machine-learning algorithms are now predominantly
used to derive PTFs (Vereecken et al., 2010). A combination of PTFs
and interpolation techniques is usually required to generate a map
of soil hydraulic properties. For example, Ferrer Julià et al. (2004)
used kriging to interpolate the PTF of saturated hydraulic conduc-
tivity to produce a 1-km2 resolution saturated hydraulic conduc-
tivity map of Spain. They reported that soil texture was the most
important input predictor to the PTF, while organic matter content
showed a low influence on saturated soils (Ferrer Julià et al., 2004).
In recent years, alternative interpolation techniques have been
introduced and evaluated to map the spatial variability of environ-
mental attributes such as regression kriging, geographically
weighted regression (GWR), and machine learning-based spatial
models (Eldeiry and Garcia, 2010; Li et al., 2011; Sharma et al.,
2011). Herbst et al. (2006) compared the use of different interpola-
tion techniques in conjunction with terrain attributes such as slope
to predict soil hydraulic properties in a micro-scale catchment.
They found that regression kriging had the smallest average
prediction error and thus was the most appropriate method to
use. Additionally, they found up to 15% improvement in spatial
predictions of hydraulic properties when using terrain attributes
as co-variables in comparison with ordinary kriging without
co-variables.

Traditionally, two modeling approaches, the CI and the IC, have
been implemented to produce maps of predicted soil physical and
hydraulic properties. One can first run PTFs at individual points or
locations of input variables throughout the area of interest and
then interpolate the point predictions to generate maps, i.e. using
a ‘calculate first, interpolate later’ (CI) approach. Alternatively,
one can interpolate the soil attribute, such as bulk density, texture
or organic matter content across the study area and then convert
the soil attribute maps to soil hydraulic properties maps by PTFs,
i.e.; an ‘interpolate first, calculate later’ (IC) approach. Many
researchers have compared different IC procedures against CI tech-
niques (e.g. Sinowski et al., 1997; Heuvelink and Pebesma, 1999;
Bechini et al., 2003), yet the reported results are different and do
not indicate the supremacy of either procedure. However, proce-
dures to predict the spatial distribution of soil hydraulic properties
may be improved with the additional use of on-the-go sensing (e.g.
Hedley and Yule, 2009a, 2009b; Hedley et al., 2013) and remote
sensing (e.g. Jana and Mohanty, 2011) technologies.

Consequently, the objectives of this study are to

(i) Develop PTFs from soil physical properties within the effec-
tive crop root zone.

(ii) Determine the best interpolation method for generating
AWC maps at the field spatial scale.

(iii) Investigate the use of ECa to improve spatial prediction of
AWC.

2. Materials and methods

2.1. Study area & collection of soil physical/hydraulic data

The 73 ha field of study is located in west Tennessee close to the
Mississippi River (Fig. 1). The field contained two center pivot irri-
gation systems that were used for supplemental irrigation of no-till
cotton during each cropping season. Field soil sampling was con-
ducted from March 20 to 22, 2014 after rainfall events when soil
was assumed to be close to field capacity. A truck mounted hydrau-
lic probe was used on March 21 and 22, 2014 to sample 100 undis-
turbed sites at 0–100 cm depth (Fig. 1). Fig. 1 shows the sampling
scheme where each soil sample was divided into four segments.
Hereafter, the word ‘‘layer” is used to distinguish among subsam-
ples rather than real soil horizons. The default depth of subsamples
was 25-cm, though adjustments were made that accounted for soil
horizon transitions. Soil texture, bulk density (BD), and gravimetric
water content were measured in the lab. Prior to this, on March 20,
2014, ECa was measured at 4700 points at shallow (0–30-cm) and
deep (0–90-cm) depths across the study area using a Veris 3100
(Veris Technologies, Salina, KS).

The Veris 3100 uses the principle of electrical resistivity to mea-
sure ECa. A small electrical current is introduced by a pair of coulter-
electrodes (rotatingdisks) into the soil and thedrop in voltage at two
different depths [i.e., shallow (approximately 0–30 cm) and deep
(approximately 0–90 cm)] are measured (Sudduth et al., 2005).
The current flowing through three different conductance pathways
(i.e. liquid, soil-liquid and solid) affects the measure of ECa (Corwin
and Lesch, 2005; Sudduth et al., 2005). In this study, the shallow ECa

readings exhibited a normal distribution, but the deep ECa

readings were skewed and thus needed to be log transformed.

2.2. Pedotransfer function development

To predict soil water retention curves (WRCs), i.e., the relation-
ship between water content and soil matric potential, for the

Fig. 1. The soil sampling scheme of soil physical properties that was used within a
73-ha study field of cotton that is located in Dyer County, Tennessee.
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