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s u m m a r y

In this study, a coupled ensemble filtering and probabilistic collocation (EFPC) approach is proposed for
uncertainty quantification of hydrologic models. This approach combines the capabilities of the ensemble
Kalman filter (EnKF) and the probabilistic collocation method (PCM) to provide a better treatment of
uncertainties in hydrologic models. The EnKF method would be employed to approximate the posterior
probabilities of model parameters and improve the forecasting accuracy based on the observed measure-
ments; the PCM approach is proposed to construct a model response surface in terms of the posterior
probabilities of model parameters to reveal uncertainty propagation from model parameters to model
outputs. The proposed method is applied to the Xiangxi River, located in the Three Gorges Reservoir area
of China. The results indicate that the proposed EFPC approach can effectively quantify the uncertainty of
hydrologic models. Even for a simple conceptual hydrological model, the efficiency of EFPC approach is
about 10 times faster than traditional Monte Carlo method without obvious decrease in prediction accu-
racy. Finally, the results can explicitly reveal the contributions of model parameters to the total variance
of model predictions during the simulation period.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hydrologic models are simplified, conceptual representations of
a part of the hydrologic cycle, which use relatively simple mathe-
matical equations to conceptualize and aggregate the complex,
spatially distributed, and highly interrelated water, energy, and
vegetation processes in a watershed (Vrugt et al., 2005). Such con-
ceptualization and aggregation lead to extensive uncertainties
involved in both model parameters and structures, and conse-
quently produce significant uncertainties in hydrologic predic-
tions. Uncertainty in hydrologic predictions can originate from
several major sources, including model structures, parameters,
and measurement errors in model inputs (Ajami et al., 2007; Liu
et al., 2012). Therefore, effective uncertainty quantification and
reduction methods are required to produce reliable hydrologic
forecasts for many real-world water resources applications, such
as flooding control, drought management and reservoir operation
(Fan et al., 2012, 2015a; Kong et al., 2015).

Previously, a number of probabilistic estimation methods have
been proposed for quantifying uncertainty in hydrologic predic-
tions. The probabilistic estimation methods approximate the pos-
terior probability distributions of the hydrological parameters
through the Bayesian theorem, conditioned on the streamflow
observations. The generalized likelihood uncertainty estimation
(GLUE) (Beven and Binley, 1992), Markov Chain Monte Carlo
(Vrugt et al., 2009; Han et al., 2014), Bayesian model averaging
(BMA) (Diks and Vrugt, 2010), and approximate Bayesian computa-
tion (Vrugt and Sadegh, 2013) methods are those extensively used
probabilistic estimation methods. For instance, Madadgar and
Moradkhani (2014) improved Bayesian Multi-modeling predic-
tions through integration of copulas and Bayesian model averaging
methods. DeChant and Moradkhani (2014b) proposed a full review
of uncertainty quantification methods.

In a separate line of research, sequential data assimilation
methods have been developed to explicitly handle various uncer-
tainties and optimally merging observations into uncertain model
predictions (Xie and Zhang, 2013; Zhang et al., 2012a,b; Zhang and
Yang, 2013, 2014; Chang and Sayemuzzaman, 2014; Assumaning
and Chang, 2014). In contrast to classical model calibration strate-
gies, sequential data assimilation approaches continuously update
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the states and parameters to improve model forecasts when new
measurements become available (Vrugt et al., 2005). The prototype
of sequential data assimilation techniques, the Kalman filter (KF)
(Kalman, 1960) and the ensemble Kalman filter (EnKF) (Evensen,
1994), provide optimal frameworks for linear dynamic models
with Gaussian uncertainties. The EnKF approach is one of the most
frequently used data assimilation methods in hydrology due to its
attractive features of real-time adjustment and easy implementa-
tion (Reichle et al., 2002). The EnKF method can provide a general
framework for dynamic state, parameter, and joint state-
parameter estimation in hydrologic models. For example,
Moradkhani et al. (2005a) proposed a dual-state estimation
approach based on EnKF for sequential estimation for both param-
eters and state variables of a hydrologic model. Weerts and EI
Serafy (2006) compared the capability of EnKF and particle filter
(PF) methods in reducing uncertainty in the rainfall–runoff update
and internal model state estimation for flooding forecasting pur-
poses. Parrish et al. (2012) integrated Bayesian model averaging
and data assimilation to reduce model uncertainty. DeChant and
Moradkhani (2014a) combined ensemble data assimilation and
sequential Bayesian methods to provide a reliable prediction of
seasonal forecast uncertainty. Shi et al. (2014) conducted multiple
parameter estimation using multivariate observations via the
ensemble Kalman filter (EnKF) for a physically based land surface
hydrologic model. However, due to the local complex characteris-
tics of the watershed, some parameters in the hydrologic model
may not be clearly identifiable and show slow convergence
(Moradkhani et al., 2005b, 2012). Moreover, the same hydrologic
model parameter may even show contrary convergence character-
istics when different data assimilation methods are used. As shown
by Moradkhani et al. (2005a,b), the Cmax parameter for the Hymod
was identifiable by using particle filter method but unidentifiable
by using EnKF. Such unidentifiable parameters would lead to
extensive uncertainties in hydrologic forecasts. Moreover, stochas-
tic perturbations are usually added to the model inputs (e.g. pre-
cipitation, potential evapotranspiration, etc.) and observations (e.
g. streamflow) to account for uncertainties in actual measure-
ments. Such random noise would results in uncertainties in model
parameters. Consequently, efficient forward uncertainty quantifi-
cation methods (i.e. from model parameters to model predictions)
are still desired for further analyzing the uncertainty in hydrologic
predictions. Such methods can reveal the uncertainty evolution
and propagation in hydrologic simulation.

Previously, Monte Carlo simulations are usually employed to
quantify the uncertainty of hydrologic predictions resulting from
uncertain model parameters (Knighton et al., 2014; Houska et al.,
2014). In such a MC simulation process, model parameters would
be sampled from known distributions, and each sample of model
parameters would be entered into the hydrologic model to obtain
statistics or density estimates of the model predictions. However,
with complex hydrologic models such as distributed hydrologic
models, this sampling approach is computationally intensive
(Herman et al., 2013). The polynomial chaos expansions (PCEs)
are effective for uncertainty propagation in stochastic processes,
which represent the random variables through polynomial chaos
basis and obtain the unknown expansion coefficients by the Galer-
kin technique or probabilistic collocation method (PCM) (Li and
Zhang, 2007; Shi et al., 2009). The PCE-based methods have been
widely used for uncertainty quantification of subsurface flow sim-
ulation in porous media (Li and Zhang, 2007; Shi et al., 2009),
water quality modeling (Zheng et al., 2011), vehicle dynamics
(Kewlani et al., 2012), mechanical systems (Blanchard, 2010), and
so on. Fan et al. (2015b) integrated PCM into a hydrologic model
for exploring the uncertainty propagation in hydrologic simula-
tion, but it is only suitable for quantifying uncertainty of
hydrologic models with specific distributions for model parame-

ters (e.g. uniform, normal). However, in real-world hydrologic sim-
ulation, the posterior distributions of model parameters, after
calibration through probabilistic estimation approaches, may be
arbitrary.

In this study, a coupled ensemble filtering and probabilistic col-
location (EFPC) method is proposed for uncertainty quantification
of hydrologic models. In EFPC, the posterior distributions of model
parameters will be approximated through EnKF; the obtained pos-
terior distributions will be used as inputs for the probabilistic col-
location method, in which PCEs will be constructed to connect the
model parameters with the model responses. Such PCEs will reflect
the uncertainty propagation between model parameters and its
outputs. Therefore, the proposed EFPC will enable improved quan-
tification of uncertainties existing in hydrologic predictions, model
parameters, inputs and their interrelationships, and further reveal
the uncertainty evolution through the obtained PCEs. Furthermore,
a Gaussian anamorphosis (GA) approach will be presented to con-
vert the obtained posterior distributions into standard normal ran-
dom variables, which can be directly used as the inputs for PCM.
The proposed approach will be applied to the Xiangxi River basin
based on a conceptual rainfall–runoff model. The Xiangxi River
basin, located in the Three Gorges Reservoir area of China, is one
of the main tributaries in Hubei Province, with a draining area of
about 3200 km2. The Hymod, which has been used in many catch-
ments, will be employed in this study (van Delft, 2007; Wang et al.,
2009; Dechant and Moradkhani, 2012; Moradkhani et al., 2012).
This application will help demonstrate the strength and applicabil-
ity of the proposed methodology.

2. Methodology

2.1. Ensemble Kalman filter

The data assimilation methods have attracted increasing atten-
tion from hydrologists for exploring more accurate hydrological
forecasts based on real-time observations (Moradkhani et al.,
2005a; Weerts and EI Serafy, 2006; Wang et al., 2009; DeChant
and Moradkhani, 2011a,b; Plaza Guingla et al., 2013). Sequential
data assimilation is a general framework where system states
and parameters are recursively estimated/corrected when new
observations are available. In a sequential data assimilation pro-
cess, the evolution of the simulated system states can be repre-
sented as follows:

x�t ¼ f ðxþt�1;ut; hÞ þxt ð1Þ
where f is a nonlinear function expressing the system transition
from time t � 1 to t, in response to model input vectors xþt�1 ut
and h; xþt�1 is the analyzed (i.e. posteriori) estimation (after correc-
tion) of the state variable x at time step t � 1; x�t is the forecasted (i.
e. priori) estimation of the state variable x at time step t; h repre-
sents time-invariant vectors, and xt is considered as process noise.

When new observations are available, the forecasted states can
be corrected through assimilating the observations into the model,
based on the output model responding to the state variables and
parameters. The observation output model can be written as:

y�t ¼ hðx�t ; hÞ þ v t ð2Þ
where h is the nonlinear function producing forecasted observa-
tions; vt is the observation noise.

The essential methods for states updating are based on Bayesian
analysis, in which the probability density function of the current
state given the observations is approximated by the recursive
Bayesian law:

pðxt ; htjy1:tÞ ¼
pðytjxt ; htÞpðxt; ht jy1:t�1Þ

pðytjy1:t�1Þ
ð3Þ
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