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s u m m a r y

The generalized Pareto distribution (GPD) is a widely used frequency model for fitting extremes in
hydrology, especially to fit exceedances over a threshold in the peaks-over-threshold (POT) modeling
of floods or other extreme hydrological phenomena. A key goal in fitting frequency distributions to data
is to allow the estimation of distribution quantiles, which in hydrology are often used as ‘‘design events”.
The maximum likelihood (ML) method is a recommended method for fitting the GPD to data. To provide a
measure of the statistical error involved in the estimation of design events, confidence intervals for quan-
tiles (CIQs) have to be calculated. Hydrologists have traditionally used large-sample theory to construct
such CIQs, but it is shown in the present study that this leads to inaccurate results for quantiles in the
right-tail of a GPD. An improvement is therefore proposed for these classically obtained CIQs under a
GPD model fitted by ML. The conventional and proposed approaches are compared through Monte
Carlo (MC) simulation, and the resulting recommendations are put to use in a hydrological application.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The generalized Pareto distribution (GPD), introduced by
Pickands (1975), is a widely used frequency model for fitting
extremes in hydrology. Among its principal uses is in the fitting of
exceedances over a threshold in the peaks-over-threshold (POT)
modeling of floods or other extreme hydrological phenomena
(Davison, 1984; Smith, 1984; Van Montfort and Witter, 1986;
Hosking and Wallis, 1987; Rosbjerg et al., 1992; Rasmussen et al.,
1994; Ashkar and Ouarda, 1996, among others). More generally,
the GPD is used in modeling data with a right tail and no mode in
the probability density. Ashkar et al. (2004) also used the GPD to
fit low stream flows below a threshold in over 100 Canadian hydro-
metric stations. The GPD model is also used in several other areas
not related to hydrology.

The probability density function (PDF) of a GPD variable, X, is
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where b > 0 is a scale parameter and a is a shape parameter. The
range of X is 0 6 x <1 for a < 0 and 0 6 x 6 b/a for a > 0. It is noted
that when a > 0, the sample space of X is a finite interval with b/a as
upper bound. In this case, the GPD is short-tailed. When a < 0, the
GPD has a long tail thicker than that of the exponential distribution
[which corresponds to a = 0 (taken as a limit)]; the distribution in
this case is sometimes simply called Pareto or Pareto Type 1.

The cumulative distribution function (CDF) corresponding to Eq.
(1) is
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1� 1� a x
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The methods of maximum likelihood (ML), of moments (MM)
and of probability weighted moments (PWM) are the principal
methods proposed for fitting the GPD. When the distribution is
short tailed (a > 0), it was observed by Dupuis (1996) and by
Ashkar and Nwentsa Tatsambon (2007) that the MM and the
PWMmethods may produce estimates of the upper bound of X that
are inconsistent with the observed data. The inconsistency occurs
when one or more sample observations exceed the estimated

upper bound b̂=â
� �

of X. The ML method has the advantage of

not suffering from this inconsistency with the data (Ashkar and
Nwentsa Tatsambon, 2007). This method is also needed in many
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inference procedures such as when using the Akaike (AIC) or Baye-
sian (BIC) information criteria, or in applying likelihood ratio tests.
For these reasons, the ML fitting method will be the one to focus on
in the present study.

In hydrology, a key goal in fitting frequency distributions to
data is to allow the estimation of distribution quantiles, i.e. the
100� pth percentiles, by using the quantile function of X. The esti-
mated quantiles play a key role in hydrologic design and risk anal-
ysis; hence they are commonly called ‘‘design event”. Let the pth
quantile of a GPD(a, b) variable be denoted by Q(p; a, b). This quan-
tile is easily obtained by inverting the CDF of Eq (2), i.e. by substi-
tuting p = F(x; a, b), 0 6 p < 1 and calculating x as a function of p,
which gives:

Qðp;a;bÞ ¼ b=að Þ 1� ð1� pÞa� �
a– 0

�b lnð1� pÞ a ¼ 0

(
ð3Þ

where ln(�) denotes natural logarithm. Denoting by a0 and b0 the
true parameter values of X, the pth quantile Q(p; a0, b0) represents
the event under a GPD that is exceeded with probability 1 � p.

In order for the quantile function Q(p; a0, b0) to be useful in
practice, it has to be estimated from the data. In this study, the data
is assumed to be in the form of a sample xif gni¼1 of independent and
identically distributed (iid) observations. When the parameter vec-
tor (a0, b0) is estimated by ðâ; b̂Þ and then plugged into Eq. (3), it
yields the quantile (design event) estimator Qnðp; â; b̂Þ.

Following the estimation of the design event Q(p; a0, b0), it is
essential to provide a measure of the statistical error involved in
the estimation. This is commonly done by constructing confidence
intervals for the quantile (CIQs) under the chosen model and fitting
method. Hydrologists have traditionally used large-sample theory
to construct confidence intervals for design events. However, it will
be shown in the present study that such CIQs are very inaccurate
for quantiles in the right-tail of a GPD. The goal will therefore be
to improve these classically obtained CIQs. We will begin by pre-
senting the large-sample variance–covariance matrix of the ML
parameter estimators (MLEs) ðâ; b̂Þ and then review how this has
traditionally been used to derive large-sample CIQs for the GPD.

The study is organized as follows. Section 2 briefly discusses
GPD parameter estimation by ML and presents the basic asymp-
totic properties of the MLEs. Section 3 presents the approximate
sampling distribution of the GPD quantile estimators. The most
commonly used approach for calculating CIQs is then revisited,
and an improvement to this approach is proposed. These two
approaches will be referred to as the conventional and the adjusted
approaches, respectively. Then, in Section 4, the conventional and
adjusted approaches are compared through Monte Carlo (MC) sim-
ulation. In Section 5 the recommendations resulting from the MC
simulations are put to use in a hydrological application. Finally,
Section 6 presents the paper’s main conclusions and presents some
future research ideas.

2. Calculation of MLEs and their asymptotic properties under a
GPD model

Let Xn ¼ Xif gni¼1 denote a random sample of n iid observations
from aGPD(a, b) model. A specific observed sample (i.e., the observed
dataset)will be denotedby fxigni¼1. Let xn:ndenote the largest valueof
the observed sample. The log-likelihood function is given by

l a;bjXnð Þ ¼
Xn
i¼1

ln f ðXi;a;bÞ½ �

¼ �n lnbþ 1� a
a

Xn
i¼1

ln 1� aXi=bð Þ ð4Þ

The ML estimation algorithm employed in the present study is
one proposed by Davison (1984) and subsequently used by
Choulakian and Stephens (2001). In this algorithm, a change of
parameters is made: h = a/b; a = a, so that the two-dimensional
search for an ML solution ðâ; b̂Þ is reduced to a one-dimensional
search of the value ĥ that maximizes the ‘‘profile log-likelihood
function” L⁄(h) (Choulakian and Stephens, 2001), which is given by:

L�ðhÞ ¼ �n�
Xn
i¼1

lnð1� h xiÞ � n ln �ðnhÞ�1
Xn
i¼1

lnð1� h xiÞ
" #

ð5Þ

for h < 1/xn:n. Suppose a local maximum ĥ of (5) is found, then the
ML estimates ðâ; b̂Þ would be given by

â ¼ �ðn�1Þ
Xn
i¼1

lnð1� ĥ xiÞ

b̂ ¼ â=ĥ

ð6Þ

Using the log-likelihood function of Eq. (4), the following large-
sample variance–covariance matrix for the MLEs is obtained (see,
e.g., Choulakian and Stephens, 2001):

R ¼ VarðâÞ Covðâ; b̂Þ
Covðâ; b̂Þ Varðb̂Þ

" #
¼ ð1� aÞ2 bð1� aÞ

bð1� aÞ 2b2ð1� aÞ

" #
; a < 0:5

ð7Þ
When a < 0.5, the MLEs have their familiar properties of consis-

tency, asymptotic normality and asymptotic efficiency (Smith,
1984). The key asymptotic result upon which the calculation of
CIQs is based, is:

â
b̂

� �n!1
� N

a0

b0

� �
;Ra¼a0

b¼b0

� 	
ð8Þ

which states that asymptotically, the MLE vector ðâ; b̂Þ has a (bivari-
ate) normal distribution with mean (a0, b0) and variance–
covariance matrix R (given in Eq. (7)) evaluated at (a = a0, b = b0).

3. Approximate CIQs

Based on the approximate normality of the MLEs presented in
Eq. (6), an approximate distribution is obtained for the pth quantile
estimator Qnðp; â; b̂Þ and then used to construct approximate CIQs
under a GPDmodel [i.e., confidence intervals for the true quantile Q
(p; a0, b0)]. The calculations are done in the Appendix; where it is
shown that:

Qnðp; â; b̂Þ
n!1 � N Qðp;a0;b0Þ; r̂2
 � ð9Þ

with r̂2 given in the Appendix.

3.1. Conventional CIQs

Traditionally, the asymptotic normality of Qnðp; â; b̂Þ [Eq. (9)]
has formed the basis for constructing CIQs. In fact, from Eq. (9)
the following probability statement may be written at the 95% con-
fidence level:

Pr �1:96 6 Qnðp; â; b̂Þ � Qðp;a0;b0Þ
r̂

6 1:96

" #
� 95% ð10Þ

(similar statements can be made at other confidence levels). There-
fore, traditionally, the 95% CI for Q(p; a0, b0) has been

CIQ conventionalð95%Þ ¼ ½Qnðp; â; b̂Þ 	 1:96r̂� ð11Þ
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