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s u m m a r y

In this paper, we present a comparative study of bias correction methods for regional climate model
simulations considering the distributional parametric uncertainty underlying the observations/models.
In traditional bias correction schemes, the statistics of the simulated model outputs are adjusted to those
of the observation data. However, the model output and the observation data are only one case
(i.e., realization) out of many possibilities, rather than being sampled from the entire population of a cer-
tain distribution due to internal climate variability. This issue has not been considered in the bias correc-
tion schemes of the existing climate change studies. Here, three approaches are employed to explore this
issue, with the intention of providing a practical tool for bias correction of daily rainfall for use in hydro-
logic models ((1) conventional method, (2) non-informative Bayesian method, and (3) informative
Bayesian method using a Weather Generator (WG) data). The results show some plausible uncertainty
ranges of precipitation after correcting for the bias of RCM precipitation. The informative Bayesian
approach shows a narrower uncertainty range by approximately 25–45% than the non-informative
Bayesian method after bias correction for the baseline period. This indicates that the prior distribution
derived from WG may assist in reducing the uncertainty associated with parameters. The implications
of our results are of great importance in hydrological impact assessments of climate change because they
are related to actions for mitigation and adaptation to climate change. Since this is a proof of concept
study that mainly illustrates the logic of the analysis for uncertainty-based bias correction, future
research exploring the impacts of uncertainty on climate impact assessments and how to utilize
uncertainty while planning mitigation and adaptation strategies is still needed.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Quantifying uncertainty in estimates of future climate change
for use in climate impact simulations is a necessary step for detec-
tion, attribution, and mitigation and adaptation strategies (Deser
et al., 2012b). Hence, demand for more quantitative analyses of
future climate change is increasing (Collins et al., 2012). These
uncertainties are due to scenario uncertainty, model uncertainty,
and internal climate variability (Hawkins and Sutton, 2009;
Tebaldi and Knutti, 2007). Internal climate variability results from
natural fluctuations. Some recent studies have drawn attention to
the contributions of natural variability to climate change (Deser
et al., 2012a; Hawkins and Sutton, 2009; Kendon et al., 2008;
Knutti and Sedláček, 2013; Tebaldi et al., 2011; Zunz et al.,

2013). The uncertainties of climate projections due to natural
variability are considered to be irreducible (Fischer et al., 2013;
Smith et al., 2007).

Although bias correction is controversial (Ehret et al., 2012;
Muerth et al., 2013), bias correction methods have been success-
fully and widely applied in climate change studies (Dosio and
Paruolo, 2011; Piani and Haerter, 2012; Rojas et al., 2011). In cli-
mate change studies, 30 years of observation data are generally
used as a reference, as defined by the World Meteorological Orga-
nization (WMO). However, each observation is only one case out of
many possibilities, rather than being sampled from the entire pop-
ulation of a certain distribution, due to distributional parametric
uncertainties that have not been considered in the existing bias
correction schemes used in the past climate change studies. This
has particularly important implications for uncertainties associ-
ated with the parameters of the probability density function
(PDF) used for correcting bias in climate model outputs, since in
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traditional bias correction schemes the statistics of the simulated
model outputs are adjusted to those of the observation data, which
is only one realization of many possibilities. The uncertainty in
parameter estimates is directly related to the sample size and
the quality of available information. In other words, distributional
parametric uncertainty exists when limited amounts of hydrologic
data are used to estimate the parameters of PDF. Both the natural
randomness of hydrologic data and the distributional parametric
uncertainty in bias correction may contribute to the uncertainty
in future climate change projections. However, most studies of
uncertainties in hydrologic studies have focused on measurement
uncertainties mainly resulting from the spatial integration of
measurements across different sites. Here we do not consider
measurement error, but concentrate on distributional parametric
uncertainty. In other words, measurement error and its impact
on bias correction for future projections are not included in this
study, but could be added in future analyses if needed.

In this paper, we explore the following questions:

(1) Can uncertainties in observation and regional climate model
output with respect to distributional parametric uncertainty
be modeled simultaneously and consistently?

(2) Climate change studies use Weather Generators (WG)
informed by global climate model (GCM) or regional climate
model (RCM) integration (forecast or climate change) for
downscaling.
A. Is it better to use precipitation sequences simulated

from the WG as a prior distribution instead of a
non-informative prior? Does the WG really add value?

B. Does a combination of the WG and Bayesian model
better inform uncertainty?

(3) Can a Bayesian-based bias correction model offer useful sce-
narios of daily precipitation for climate change studies?

In this study, three approaches are employed to explore these
questions, with the intention of providing a practical tool for bias
correction of daily rainfall for use in hydrologic models.
The approaches are based on the quantile mapping method: (1)
the conventional method and two new approaches, (2) the
non-informative Bayesian (NIB) method and (3) the informative
Bayesian (IB) method. In this study, we aim to quantify distribu-
tional parametric uncertainty and show some plausible range of
precipitation after correcting for the bias of RCM precipitation.
The proposed methodology is applied to three catchments located
in the southwest of England. One emission scenario (A1B) and one-
member (Q0) among 11 members of the HadRM3 model output
driven by the GCM HadCM3 (Murphy et al., 2009) are used for
the analysis because the purpose of this study is not to prove the
two proposed bias correction methods (NIB and IB methods) or
to determine which method is the best among the three
approaches. The aim is mainly to introduce a new concept, the
logic underlying uncertainty based bias correction and how this
concept can be extended to conventional approaches. Hence, we
believe three cases are sufficient.

2. Data and Weather Generator

Three catchments in the southwest of England are used in this
study. The catchments have varying rainfall regimes (i.e., low,
medium, and high rainfall) and are representative of the range of
rainfall distributions in this region. The Avon River at Melksham
(665.6 km2) has low rainfall (797 mm/year), the Exe River at
Thorverton (606 km2) has medium rainfall (1260 mm/year), and
the Tamar River at Gunnislake (916.9 km2) has high rainfall
(1751 mm/year). Daily time series of the observed precipitation

data are obtained from the UK Met Office. For the model output,
we have obtained the HadRM3 Perturbed Physics Experiment
Dataset (HadRM3-PPE-UK, resolution 25 � 25 km), which provides
time series data from 1950 to 2100. Among the data, only one
ensemble member is used in the analysis. The UKCP09 Weather
Generator (Jones et al., 2009) (WG) data is used for the prior distri-
bution (Gamma distribution). The WG generates statistically plau-
sible time series of nine climate variables (i.e., precipitation,
temperature, vapor pressure, wind, sunshine, potential evapotran-
spiration, diffuse radiation and direct radiation) at a 5 km resolu-
tion. According to the official UK government guidelines on
climate change, the UKCP09 WG is trained using the 5 km daily-
observed baseline for 1961–1995. This means that the WG model
baseline is fitted to the 1961–1995 historical observations. The
WG data are the officially approved data for climate change studies
in the UK. Precipitation is generated using the Neyman-Scott
Rectangular Processes (NSRP) model (Cowpertwait et al., 1996;
Jones et al., 2009), and other variables are then simulated given
the simulated precipitation. The NSRP model is a clustered point
process model comprised of clusters and rectangular impulse mod-
els for rainfall occurrence and amount (Onof et al., 2000). The NSRP
model describes storm origins, durations and the intensity of each
rain cell as a set of random variables. The more detailed structure
of the NSRP model is described as follows: First, storm origins are
represented by a Poisson distribution with parameter a relating to
the arrival times of the storms; Second, the storm origin randomly
generates numbers m of rain cells departing from the storm origin
at time intervals that are simulated by an exponential distribution
with parameter b; Third, the durations of the rain cells are gener-
ated by an exponential distribution with parameter c; Fourth,
the intensities of the rain cells are again simulated by exponential
distributions with parameter d; Finally, rainfall intensity is calcu-
lated by summing the intensity of each rain cell. A schematic rep-
resentation of the NSRP model is shown in Fig. 1.

The parameters of the NSRP model are estimated separately for
each month to better characterize intra-annual rainfall variability.
Expected values of rainfall statistics, such as the mean rainfall
amount, the proportion of dry days, the variance and skewness
of daily rainfall amounts, and the lag-1 autocorrelation
(Cowpertwait et al., 2002), are analytically derived with respect
to the five parameters of the NSRP model. These parameters are
as follows: (1) the average waiting time between subsequent
storm origins; (2) the average waiting time of the rain cells after
the storm origin; (3) the average cell duration; (4) the average
number of cells per storm; and (5) the average cell intensity. These
expected parameter values are then used to optimize a set of
parameters by minimizing an objective function using an opti-
mization algorithm. The required rainfall statistics for UKCP09
are estimated based on a gridded rainfall dataset at 5 � 5 km reso-
lution compiled by Perry and Hollis (2005a, b) that covers the UK
for the period 1961–1990.

3. Methodology

3.1. Bias correction methods

Numerous studies have assessed the impacts of climate change
on water resources using climate variables from global climate
models (GCMs) and water resources models (Fung et al., 2011).
However, because of the relatively low spatial resolution (100–
250 km) of GCMs, regional climate models (RCMs) are widely used
for regional impact studies at catchment scales (25–50 km) climate
variables (Fowler et al., 2007; Qin et al., 2007). Although RCMs are
able to simulate local climate at finer resolutions, outputs from
RCMs cannot be used as direct input data for hydrological models
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