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s u m m a r y

Stream turbidity typically increases during streamflow events; however, similar event hydrographs can
producemarkedly different event turbidity behaviors becausemany factors influence turbidity in addition
to streamflow, including antecedent moisture conditions, season, and supply of turbidity-causing
materials. Modeling of sub-hourly turbidity as a function of streamflow shows that event model
parameters vary on an event-by-event basis. Here we examine the extent to which stream turbidity can
be predicted through the prediction of event model parameters. Using three mid-sized streams from the
Mid-Atlantic region of the U.S., we show the model parameter set for each event can be predicted based
on the event characteristics (e.g., hydrologic, meteorologic and antecedent moisture conditions) using a
combined cluster analysis and classification tree approach. The results suggest that the ratio of beginning
event discharge to peak event discharge (an estimate of the event baseflow index), as well as catchment
antecedent moisture, are important factors in the prediction of event turbidity. Indicators of antecedent
moisture, particularly those derived from antecedent discharge, account for the majority of the splitting
nodes in the classification trees for all three streams. For this study, prediction of turbidity during stream-
flow events is based upon observed data (e.g., measured streamflow, precipitation and air temperature).
However, the results also suggest that the methods presented here can, in future work, be used in
conjunction with forecasts of streamflow, precipitation and air temperature to forecast stream turbidity.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Turbidity is an important physical and visual characteristic of
surface waters, and it serves as a useful indicator of overall stream
health. Stream turbidity is relatively simple and inexpensive to
monitor continuously (Davies-Colley and Smith, 2001) and is an
important constituent in water quality monitoring and regulation
(Gray and Glysson, 2003). Turbidity is also a versatile stream water
quality surrogate, often enabling the estimation of suspended sed-
iment (e.g., Gray and Glysson, 2003), agricultural chemicals (e.g.,
Hickman, 2004), pathogens (e.g., Christensen et al., 2000) and
heavy metals (e.g., Miller, 1997).

High levels of turbidity can have negative consequences for
both the natural and societal services and functions a stream
provides. Streams are an important source of drinking water in
the United States (U.S.) (Wickham et al., 2011), and turbidity is
of particular interest to drinking water providers. Turbidity-
causing materials can harbor pathogens and interfere with

disinfection (U.S. EPA, 1999). Drinking water systems are subject
to increased treatment cost with increases in source water turbid-
ity (Dearmont et al., 1998), and episodes of extreme turbidity can
surpass the operational limits of treatment systems (Duncan and
Grant, 2003; Portland Water Bureau, 2011).

Stream turbidity typically increases during streamflow events
and is influenced by many factors, including hydrograph shape
(e.g., baseflow contribution; Bača, 2008), antecedent moisture
conditions (Seeger et al., 2004; Giménez et al., 2012), season
(Lana-Renault and Regüés, 2009; Mather and Johnson, 2014) and
supply of turbidity-causing materials (Brasington and Richards,
2000; Doomen et al., 2008; Rodríguez-Blanco et al., 2010). Many
of these factors vary on an event-by-event basis, and similar event
hydrographs may be accompanied by notably different event
turbidity behaviors (Fig. 1).

Recent modeling of sub-hourly stream turbidity as a function of
streamflow has shown that model parameters vary on an
event-by-event basis (Eder et al., 2010; Mather and Johnson,
2014). A logical next step is to examine the extent to which those
model parameters can be predicted from event characteristics (e.g.,
antecedent moisture, hydrologic and meteorologic characteristics),
which would allow the prediction of the stream turbidity time
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series during streamflow events. Prior work predicting stream
turbidity has examined event turbidity load/yield (Mukundan
et al., 2013b), mean event turbidity (Mukundan et al., 2013b) or
prediction of daily turbidity (Mukundan et al., 2013a), often in sup-
port of reservoir turbidity models (e.g., Samal et al., 2013). While
useful in many contexts, these studies do not address the predic-
tion of the turbidity time series during streamflow events, which
could provide additional information, such as the event peak tur-
bidity, the timing of the peak relative to the streamflow peak and
the recession of turbidity following the peak.

The prediction approach used here is a combination of hierar-
chical cluster analysis and classification trees. Cluster analysis is
a method of grouping objects to maximize group member similar-
ity and has, for example, been used to group streams (Sawicz et al.,
2011; Reidy Liermann et al., 2012), streamflow (Laaha and Blöschl,
2006; Olden et al., 2012) and streamflow events (Giménez et al.,
2012; Mukundan et al., 2013b). Classification trees are commonly
used in conjunction with cluster analysis and have been used to
predict the cluster membership for ‘‘new” objects (e.g., ungauged
streams (Reidy Liermann et al., 2012)), to examine how cluster
membership may have changed over time (e.g., streams shifting
from water- to energy-limited (Sawicz et al., 2014)), or to examine
the connection between physical processes and tree design (e.g.,
seasonality and low flow discharges (Laaha and Blöschl, 2006)).
In this study, cluster analysis is used to group streamflow events
that display similar turbidity behavior. Classification trees are then
used to predict both cluster membership and model parameters for
‘‘new” events that are not part of the original training dataset. For

this study, prediction of turbidity during streamflow events is
based upon observed data (e.g., streamflow, precipitation and air
temperature). However, the methods presented here may, in future
work, allow the forecasting of stream turbidity based on forecasts
of streamflow, precipitation and air temperature.

2. Methods

2.1. Study catchments

This study uses data from three catchments within the Mid-
Atlantic hydrologic region of the U.S. (Seaber et al., 1987), as shown
in Fig. 2. This region receives an annual rainfall of approximately
1 m and precipitation has low seasonality; however, significant
seasonality of streamflow is observed due to increases in evapo-
transpiration during the growing season (Neff et al., 2000). The
mean annual temperature over the last century was approximately
11 �C (Polsky et al., 2000). The Raritan River (U.S. Geological Survey
(USGS) 01400500) catchment has an area of 1269 km2 and rises
from 6 m elevation at the gage to a maximum elevation of 378 m
with a mean slope of 5.5% (Falcone et al., 2010). This catchment
is approximately half within the Piedmont physiographic province
and half in the New England province (Fenneman and Johnson,
1946). The dominant land-cover classes for the Raritan River catch-
ment are forest (40%, mostly deciduous), agriculture (28%, about
equal parts pasture/hay and cultivated crops) and urban (22%)
(Fry et al., 2011).
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Fig. 1. Three example streamflow events from the Raritan River with similar hydrographs (blue) and different event turbidity (black). The resulting turbidity–discharge loops
are shown below the time series plots. Data points are only shown on the loop plots and the loop direction is shown by the curved arrows. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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