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A novel implementation of Dynamic Linear Bayesian Models (DLBM), using either a Varying Coefficient
Regression (VCR) or a Discount Weighted Regression (DWR) algorithm was used in the hydrological
modeling of annual hydrographs as well as 1-, 2-, and 3-day lead time stream flow forecasting. Using
hydrological data (daily discharge, rainfall, and mean, maximum and minimum air temperatures) from
the Upper Narew River watershed in Poland, the forecasting performance of DLBM was compared to that
of traditional multiple linear regression (MLR) and more recent artificial neural network (ANN) based
models. Model performance was ranked DLBM-DWR >DLBM-VCR > MLR > ANN for both annual

hydrograph modeling and 1-, 2-, and 3-day lead forecasting, indicating that the DWR and VCR algorithms,
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operating in a DLBM framework, represent promising new methods for both annual hydrograph
modeling and short-term stream flow forecasting.
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1. Introduction

Accurate stream flow forecasting is an important part of effec-
tive and sustainable water resources management, particularly in
flood-prone areas (Adamowski et al., 2013; Rathinasamy et al.,
2013; Adamowski and Prokoph, 2014; Karran et al., 2014). Accu-
rate annual stream flow hydrograph simulations are very useful
tools for reservoir operations and irrigation management, and con-
tribute to improving our understanding of watershed science and
management (Adamowski et al., 2012b; Nourani et al., 2013). Sim-
ilarly, accurate short-term (e.g., daily) stream flow forecasts are
used in flood-prone areas for flood forecasting/warning systems
and can be a valuable tool in providing advanced warning of an
impending flood to reduce and mitigate the impacts of flooding
on human health and infrastructure.

Data-driven hydrological methods are becoming increasingly
popular in stream flow forecasting applications due to their rapid
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development times, minimum information requirements, and ease
of real-time implementation (Adamowski and Prasher, 2012;
Adamowski et al., 2012a; Tiwari and Adamowski, 2013). Although
they may lack the ability to provide a physical interpretation or
yield insights into catchment processes, they are nevertheless able
to provide relatively accurate stream flow forecasts. Traditionally,
multiple linear regression and autoregressive integrated moving
average methods have been used in stream flow forecasting. More
recently, newer methods have been explored, including artificial
neural networks, support vector regression, and Bayesian-based
methods, among others (Nourani et al., 2014).

Many applications of regression methods can be found in the
hydrological literature (e.g, Tangborn and Rasmussen, 1976;
Curry and Bras, 1980; Phien et al., 1990; Tolland et al., 1998; Diop
and Grimes, 2003; Chau et al.,, 2005; Archer and Fowler, 2008;
Liping and Binghui, 2013; Haidary et al., 2013 amongst others).
Examples of hydrological applications of autoregressive-moving-
average (ARMA) and autoregressive integrated moving average
(ARIMA) models include McKerchar and Delleur (1974), Noakes
et al. (1985), Kember et al. (1993), Sun and Koch (2001), Yurekli
and Kurunc (2005), Koutroumanidis et al. (2009), and Modarres
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and Ouarda (2013); amongst others. Artificial neural networks
(ANN), or simply neural networks (NN), have recently gained
wide-spread use in hydrological forecasting due to their ability to
model any input-output relationship regardless of the degree of
nonlinearity or lack of a priori knowledge of the physical system.
In one of the first applications of NNs to river flow forecasting,
Kang et al. (1993) used NNs and ARMA models to predict daily
and hourly river flows and found that NNs could be effectively used
for forecasting river flows. Since then, many studies have confirmed
the usefulness of NN models in river flow forecasting (e.g., Hsu et al.,
2002; Tawfik, 2003; Piotrowski et al., 2006; Bhadra et al., 2010;
Pramanik et al., 2011; Artigue et al., 2012; among others). For
instance, Kisi (2004) used NNs to forecast mean monthly stream
flow for reservoir operation, while Kisi (2007) used different NN
algorithms for both short-term and long-term forecasts of stream
flow in the North Platte River in the United States. These studies
provide evidence in support of the ability of neural networks to
serve as potentially useful forecasting tools in hydrology.

1.1. Bayesian methods in hydrological forecasting

Hydrological models include many uncertainties, which, accord-
ing to the principles of Bayesian inference, should be quantitatively
determined in the form of a probability distribution. Quantitatively
assessing uncertainty allows researchers and practitioners alike to
explore uncertainty from various sources (e.g., collected data, data
processing, model parameter selection, etc.). Moreover, quantita-
tively accounting for uncertainty can provide insight into the
predictive power of a particular model and how suitable it might
be in hydrological forecasting applications. In a study
by Krzysztofowicz (1999), a methodological foundation and opera-
tional framework for probabilistic forecasting via any deterministic
hydrologic model was introduced under the name of Bayesian Fore-
casting System (BFS). The author noted these main characteristics
of a BFS: (i) total uncertainty is the result of both input uncertainty
and hydrologic uncertainty, (ii) the probabilistic forecast occurs in
the form of a Bayes density, (iii) the predictive density involves
posterior updates, (iv) the BFS has a self-calibration property, and
(v) the BFS guards the decision-maker against notoriously poor
forecasts. In further studies, Krzysztofowicz (2002) and
Krzysztofowicz and Maranzano (2004a, 2004b) used a short-term
Probabilistic River Stage Forecast (PRSF) and Probabilistic Stage
Transition Forecast (PSTF) within a Probabilistic Quantitative Pre-
cipitation Forecast (PQPF) to develop a deterministic hydrological
model for rainfall-runoff transformation. The total predictive
uncertainty was decomposed into two sources: (i) the precipitation
uncertainty tied to the basin mean precipitation forecast, and (ii)
the hydrological uncertainty, which treats all other sources of error
as an aggregate.

Bayes’s theorem has been further adapted in regression analy-
sis, e.g., the static regression model derived from Bayesian infer-
ence described by Carpenter (2003) and Howson and Urbach
(2005). While this application of Bayesian theory was based on
normally distributed random variables, it can, however, be used
for any probability distribution. More recently, Bayesian
approaches have been explored in the stream flow and flood fore-
casting literature with a focus on improving the quality of a fore-
cast by providing the uncertainty surrounding the model
parameters used to derive predictions. Fortin et al. (2004) used
Gibbs sampling in a Bayesian framework for parameter estimation
using a reformulated shifting level model for detection of abrupt
regime changes and forecasting of annual stream flow series using
data from the Senegal River in Africa.

In a study by Todini (2008), a Model Conditional Processor
(MCP) approach was introduced for the assessment of predictive
uncertainty and compared to a Hydrologic Uncertainty Processor

(HUP) and Bayesian Model Averaging (BMA) for flood forecasting
data from the Po River in Italy. The MCP approach combined sev-
eral models’ forecasts via a multivariate normal space by means
of the Normal Quantile Transform which allowed for the assess-
ment of the density of the predictand, conditional on all the model
forecasts at the same time. Compared to both HUP and BMA, the
MCP approach was deemed more useful in reducing predictive
uncertainty variance. Wang et al. (2009) used a Bayesian joint
probability (BJP) modeling approach for seasonal forecasting of
stream flows at multiple sites in the Murrumbidgee River catch-
ment in Australia. The BJP approach used a Box-Cox transformed
multivariate normal distribution to model the joint distribution
of future stream flows and its predictors, while Bayesian inference
of model parameters was carried out by Markov Chain Monte Carlo
(MCMC) simulations. Finally, for several flood events in a small
basin in the Calabria region of southern Italy, Biondi and De Luca
(2013) evaluated the performance of a BFS, with the aim of evalu-
ating total uncertainty in real-time flood forecasting. Their results
highlighted the importance of using different diagnostic
approaches to analyze the quality of the forecast.

1.2. Dynamic Linear Bayesian Models (DLBM)

Dynamic Linear Bayesian Models (DLBM) are useful for hydro-
logical forecasting applications because they are able to reflect
changing dynamics through linear updating of state variables and
parameters, in a manner akin to the highly dynamic natural phe-
nomena that is the hydrological cycle. Since hydrological cycle
components occur simultaneously at various levels of complexity,
forecasting them accurately using static models is difficult. The
addition of a dynamic linear process matched with Bayesian infer-
ence in the form of DLBM helps bridge this gap by performing
dynamic updates to state variables and parameters, allowing for
the evolving dynamics of hydrological time series to be captured
and effectively modeled.

Assuming that a variable is observed at regular intervals and
that some error is associated with each observation, a dynamic
model can be used. The DLBM in the form of Varying Coefficient
Regression (VCR) was developed by Harvey (1986) for applica-
tions in modeling multivariate time series using algorithms for
univariate cases, including for the analysis of international
exchange rates. The prior distribution and the likelihood are com-
bined via Bayesian dynamic regression into a new posterior dis-
tribution for the next step. The result is a regular updating of
the conditional posterior density of the regression parameters
and the predictive probability distribution. Dynamic Linear Baye-
sian Models have been applied for ecological modeling of the con-
centration of the marine toxic microalga Dinophysis cf. acuminate
(Soudant et al., 1997). The basic assumption was the existence of
an underlying and unobservable time series for the vector param-
eters whose distribution was sequentially estimated. The DLBM
approach allows for the time-varying influence of the covariates.
The evolution in time of the regression parameters indicates
scales of influence in the environmental factors, and provides a
segmentation of the time series into significant and non-
significant phases.

The first DLBM approach introduced in this study for applica-
tions to hydrological modeling and forecasting is the VCR. To
address network security issues involving breaches or unautho-
rized information manipulation in computer systems,
Triantafyllopoulos and Pikoulas (2002) developed and used a VCR
model based on a unique approach where the unknown observa-
tional variance matrix distribution was left unspecified. Thereby
free of the Wishart limitation, they were able to provide faster
and more reliable forecasts. Further exploring the VCR model,
Salvador and Gargallo (2004) proposed an automatic monitoring



Download English Version:

https://daneshyari.com/en/article/6410280

Download Persian Version:

https://daneshyari.com/article/6410280

Daneshyari.com


https://daneshyari.com/en/article/6410280
https://daneshyari.com/article/6410280
https://daneshyari.com

