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s u m m a r y

Decision making is a significant tool in water resources management applications. This technical note
approaches a decision dilemma that has not yet been considered for the water resources management
of a watershed. A common cost-benefit analysis approach, which is novel in the risk analysis of hydro-
logic/hydraulic applications, and a Bayesian decision analysis are applied to aid the decision making
on whether or not to construct a water reservoir for irrigation purposes. The alternative option examined
is a scaled parabolic fine variation in terms of over-pumping violations in contrast to common practices
that usually consider short-term fines. The methodological steps are analytically presented associated
with originally developed code. Such an application, and in such detail, represents new feedback. The
results indicate that the probability uncertainty is the driving issue that determines the optimal decision
with each methodology, and depending on the unknown probability handling, each methodology may
lead to a different optimal decision. Thus, the proposed tool can help decision makers to examine and
compare different scenarios using two different approaches before making a decision considering the cost
of a hydrologic/hydraulic project and the varied economic charges that water table limit violations can
cause inside an audit interval. In contrast to practices that assess the effect of each proposed action
separately considering only current knowledge of the examined issue, this tool aids decision making
by considering prior information and the sampling distribution of future successful audits.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Bayesian decision analysis is usually employed to make deci-
sions in the presence of uncertainty. Therefore, it was primarily
developed to utilize additional information to reduce the risk of
uncertain decisions. Bayesian decision theory quantifies the yield
of various decisions using probabilities and costs that accompany
such decisions. The basic aim is to choose the class for which the
expected loss is smallest. The problem is posed in probabilistic
terms, and it is assumed that all relevant probabilities are
unknown. The probabilistic approach is powerful if the probability
distributions are indeed known, but this is often not the case. A
common way to overcome this difficulty is to apply Bayesian deci-
sion theory by establishing a prior distribution (Berger, 1985;
O’Malley and Vesselinov, 2014).

An initial application of Bayesian decision theory in hydrology
was to assess the costs of overdesign of a flood levee in the face

of flood frequency uncertainty (Davis et al., 1972). Since then, it
has been used in many applications. For example, it has been used
to determine optimal groundwater sampling frequencies (Grosser
and Goodman, 1985) and in decision analyses to engineer design
projects, groundwater flow and transport, and monitoring net-
works in which the hydrogeological environment plays an impor-
tant role (Freeze et al., 1990). It has been used to address the
problem of permitting waste sites under conditions of imperfect
information (Marin et al., 1989; Medina et al., 1989) and for the
engineering design of a groundwater interception well used to cap-
ture a contaminant plume (Wijedasa and Kemblowski, 1993).
Moreover, it has been used for selecting the best experimental
design for groundwater modeling and management design under
parameter uncertainty (McPhee and Yeh, 2006) and for investigat-
ing the value of collecting hydraulic conductivity data for optimal
groundwater resources management (Feyen and Gorelick, 2005).

Since the early 1990s, in most decision analysis studies, it was
assumed that decisions would be made by a rational, financially
driven decision maker who might be risk averse but who would
otherwisemake decisions thatmaximized his or her economic posi-
tion. However, the decisions are strongly influenced by the profile of
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the decision maker. Thus, water resources management experts
need to be aware of the complexity of the decision process, the close
relationship that exists between the technical input and the risk
term in a decision analysis, and the widely differing views toward
the methodology and value of risk calculations (Freeze, 2015).

The decision-making process, according to the Bayesian risk, is a
methodology that combines the expected loss of a specific decision
with the probability, h, the loss will occur. The methodology is
based on statistical knowledge that is produced after sampling
and using prior knowledge information. The latter is known as
‘‘soft information” (Czado and Brechmann, 2014; Lerche and
Paleologos, 2001; Parent and Bernier, 2003). The basic characteris-
tics of the Bayesian decision theory are the state parameters hi
(i = 0. . .n) that correspond to the number of stated decisions, the
state of the possible decisions or actions A(i), and the state of the
expected loss function that corresponds to each decision, L(A(i),
hi). The set H that considers all the possible state parameters, hi,
is known as the parametric space. Set A contains all possible
actions A(i). A loss function L(A(i), hi) is defined for all A(i), hi that
belong to [H � A].

The Bayesian decision method is applied herein to address the
dilemma of whether to construct a water reservoir for irrigation
purposes or to apply a groundwater resources management policy
in terms of scaled set fines when the aquifer is depleted over a cer-
tain limit. The work was inspired by an actual case at the Mires
Aquifer of the Messara Valley on the Island of Crete, Greece, where
the sustainable aquifer level limit was set by the local authorities
at 38 m above sea level. This value was based on a physically based
approach that involves physical characteristics of the basin. The
local authorities considered that the high aquifer capacities of
the 80s can not be met nowadays, while the recent are quite
low. Therefore, in order to promote environmental policy and
awareness they set an aquifer level limit considering the feasible
medium aquifer capacities during the 90s, which were on average
determined equal to 65 Mm3. The aquifer effective area is equal to
20 km2 and the porosity equal to 0.085 (Varouchakis, 2015).
Dividing the first two figures and then their result with the poros-
ity the aquifer level was calculated equal to 38 m.

This work provides a tool (coded process, Appendix A) that con-
siders, except from the Bayesian decision method, a cost-benefit
analysis approach to assess the stated dilemma and to help deci-
sion makers to compare techniques for testing potential strategies
for decision dilemmas in hydrological applications.

2. Methodology

2.1. Decision-making process

The decision-making process involves two stages: state estima-
tion and decision making. For state estimation, firstly, all the state
parameters hi are defined. However, in the Bayesian approach, a
state parameter is an unknown quantity and is considered a ran-
dom variable that must be determined. The procedure of estimat-
ing each hi involves previous knowledge on the examined issue and
the use of the subjective prior distribution p(hi) that expresses the
prior information for each state parameter. Next, the Bayesian risk
function is obtained to estimate the optimal decision or the deci-
sion with the minimum expected risk (Berger, 1985; Lerche and
Paleologos, 2001; Wolfson et al., 1996). The latter also applies in
terms of a cost-benefit analysis procedure and denotes the prefer-
able action. The Bayesian decision-making process follows these
four steps:

1. Set up the decision-making problem by introducing the possible
actions set A and the parametric space H.

2. Establish the expected loss function for each decision A(i), and
provide the state of the goal function. If, at this step, the param-
eters hi are considered known, then the decision process is
called a cost-benefit analysis, and Step 4 is directly applied. If
not, then both Steps 3 and 4 apply.

3. Develop the subjective prior distributions for each hi quantify-
ing the previous information.

4. Combine Steps 1, 2, and 3 via the risk function. The decision
with the minimum expected risk is the optimal decision.

Fig. 1 presents a flowchart that describes the methodological
steps of Bayesian and cost-benefit risk analysis.

2.2. Reservoir construction dilemma: case study

The decision-making problem considers two possible decisions.
The first is to continue the same irrigation practice that causes the
aquifer over-pumping, with a probability of paying fines to the
authorities (related to the number Y of over-pumping violations).
The second is to stop that practice and use a reservoir that will sup-
ply the area with irrigated water. Therefore, the authorities must
examine an environmental policy based on over-pumping penal-
ties while considering the construction of a reservoir. Thus, the
dilemma in this case is whether to continue the irrigation practice
and pay the potential fines or to construct a reservoir. The answer
is firstly given in terms of Bayesian decision theory considering a
fixed cost for the reservoir construction and an environmental pol-
icy regarding the irrigation groundwater that considers a varied
penalty policy for over-pumping. The following approach presents
the mathematical procedure that is applicable with any penalty
policy and construction cost.

Action A(0): Do not construct the reservoir

The goal function is the expected value of the loss function for
action A(0). Thus, the goal function is expressed as follows:

GðAð0Þ; h0Þ ¼ E½LðAð0Þ;YÞ�: ð1Þ
The penalty policy can consider a range of loss functions order.

Usually in environmental problems, a linear or a parabolic loss
function is applied. In addition, a combination of scaled loss func-
tions is often applied to express first soft and then harsh penalty
policies. Herein, a scaled parabolic function is assumed to express
the penalty policy variation because of the importance of the prob-
lem. Its expression is given below:

LðAð0Þ;YÞ ¼
K1Y

2; 0 6 Y 6 n1

K2Y
2; n1 < Y 6 n2

K3Y
2; Y > n2

8><
>: ; K1 < K2 < K3; ð2Þ

where Kv are the fines to be paid (v = 1, 2, 3), nj is the audit interval
limit (j = 1, 2), and Y denotes the unknown number of over-
pumping violations. The loss function implies the fines to be paid
to the local authorities. The expected value of the loss function is
provided by the following equation similar to Eq. (1):

GðAð0Þ; h0Þ ¼
XN
Y¼0

LðAð0Þ;YÞf ðYÞ: ð3Þ

In the previous equation, f(Y) denotes the discrete probability den-
sity function of Y violations in an interval of N audits, and L(A(0), Y)
denotes the loss function for decision A(0). Combining Eqs. (2) and
(3), the analytical mathematical expression of the goal function for
action A(0) is obtained:

GðAð0Þ; h0Þ ¼
Xn1
Y¼0

K1Y
2f ðYÞ þ

Xn2
n1þ1

K2Y
2f ðYÞ þ

XN
n2þ1

K3Y
2f ðYÞ: ð4Þ
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