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s u m m a r y

Hydrologic time series are often characterized by temporal changes that give rise to non-stationarity.
When the distribution describing the data changes over time, it is important to detect these changes
so that correct inferences can be drawn from the data. The Lombard test, a non-parametric rank-based
test to detect change points in the moments of a time series, has been recently used in the hydrologic
literature to detect change points in the mean and variance. Little is known, however, about the perfor-
mance of this test in detecting changes in variance, despite the potentially large impacts that these
changes (shifts) could have when dealing with extremes. Here we address this issue in a Monte Carlo sim-
ulation framework. We consider a number of different situations that can manifest themselves in hydro-
logic time series, including the dependence of the results on the magnitude of the shift, significance level,
sample size and location of the change point within the series. Analyses are performed considering
abrupt changes in variance occurring with and without shifts in the mean. The results show that the
power of the test in detecting change points in variance is small when the changes are small. It is large
when the change point occurs close to the middle of the time series, and it increases nonlinearly with
increasing sample size. Moreover, the power of the test is greatly reduced by the presence of change
points in mean. We propose removing the change in the mean before testing for change points in vari-
ance. Simulation results demonstrate that this strategy effectively increases the power of the test.
Finally, the Lombard test is applied to annual peak discharge records from 3686 U.S. Geological Survey
stream-gaging stations across the conterminous United States, and the results are discussed in light of
the insights from the simulations’ results.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Hydrologists and water resources managers have been chal-
lenged by the non-stationarities in the hydrologic records. Milly
et al. (2008) noted that ‘‘stationarity is dead” and cannot be
assumed in modern design and management of hydraulic struc-
tures. It is clear that stationarity and the idea that the distribution
of the variable of interest does not change over time is more of a
working assumption (e.g., Hirsch, 2011; Lins and Cohn, 2011)
and that its validity is not justified when working with ‘‘long” (cen-
tennial to millennial) records.

Hydrometeorological time series (e.g., rainfall, discharge) are
said to be stationary if their distributions are invariant to transla-
tion in time (e.g., Brillinger, 2001), meaning that they do not

exhibit gradual or abrupt changes or periodicities (e.g., Salas,
1993). Non-stationarity in hydrologic time series can be attributed
to a number of factors, from natural variability of the climate sys-
tem to human modifications of the watersheds. The presence of
non-stationarities in hydrology complicates planning, operation
and management of water systems and water resources. It also
hinders accurate hydrologic modeling and forecasting which can
have a large impact in our understanding of the nexus between
water, ecological and social systems. Inferences regarding the
uncertainty in future water availability, water usage, and water
demand are difficult to make if we do not account for non-
stationarity in the hydrologic data. Because of the problems arising
from non-stationarity, it is imperative to detect them to avoid
drawing conclusions that are not supported by the data.

Changes in hydrologic time series can result from complex pro-
cesses, and the detection of these changes can be problematic and
challenging. Many obstacles prevent accurate estimation of change
points in hydrologic time series. Changes can occur in different
moments (e.g., mean, variance) of the distribution of the variable
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of interest. Variance changes in a time series can obscure changes
in the mean, and vice versa (e.g., Kundzewicz and Robson, 2004).
Changes can be abrupt or gradual. Determining explicitly whether
a change is abrupt or gradual, or if there is a trend present in the
data, is an active research question that hydrologists and statisti-
cians are working on (e.g., Rougé et al., 2013). Further complica-
tions in detecting change points in hydrologic time series are
added by the not-so-unlikely presence of multiple change points
and outliers, which have the potential of masking the presence of
change points during the detection process. Further, the unknown
number of changes and their locations add to the complexity of
this problem. Hydrologic time series are usually highly skewed,
potentially affecting the accurate detection of change point(s). Sta-
tistical methods to detect change points are particularly helpful as
it is not always easy to understand physically how changes in dif-
ferent drivers (e.g., changes in land use/land cover) can lead to
changes in the variable of interest (e.g., annual maximum
discharge).

Over the past few decades, a number of methods have been
developed to detect changes in the time series of interest. Paramet-
ric and non-parametric methods are available in both frequentist
and Bayesian approaches (e.g., Barry and Hartigan, 1993;
Lombard, 1987; Pettitt, 1979). For an extended review on change
point analysis one can refer to Beaulieu et al. (2009), Brodsky
and Darkhovsky (1993), Peterson et al. (1998), and Reeves et al.
(2007). Of particular importance are the hydrometeorological
extremes (e.g., heavy rainfall, flooding), which have an immediate
and direct impact on the society and the ecosystems. In addition,
small changes in extremes can be more impactful than similar
changes in the averages. For example, small increase in the vari-
ance of annual maximum or annual minimum discharge can have
larger impacts than the same amount of increase in the variance of
the average flow. Modeling studies point to an acceleration of the
hydrologic cycle with a projected increase in extremes (e.g., Held
and Soden, 2006). Changes in the frequency and magnitude of
flooding due to climate change are larger than the changes in the
average precipitation (e.g., Knox, 1993). This is due to higher than
average sensitivity of extremes to climate change (Knox, 1993).
Hydrologic extremes, generally described using extreme value dis-
tributions, are highly skewed. This leads to high sensitivity of prob-
abilities of extreme values to small changes in the parameters of
the distributions. In hydrology, changes in mean and their impact
on the quantiles of the distribution have been studied (Collins,
2009; Mallakpour and Villarini, 2015; Villarini et al., 2009b;
Zhang et al., 2014) and a number of approaches have been pro-
posed to identify these changes (Beaulieu et al., 2009;
Kundzewicz and Robson, 2004; Rougé et al., 2013). However, the
detection of changes in variance is still problematic despite the fact
that changes in the variance for extremes are at least as important
as the changes in means. For few non-normal distributions (often
the case in hydrology) such as Gamma distribution, a change in
variance causes a change in mean, and vice versa, as both of them
depend on the location and scale parameters of the distribution.
Variance increase leads to higher probability of occurrence of
quantiles on both the upper and lower tails. In addition, extreme
events, their frequency and magnitudes, are more sensitive to
changes in variance than changes in mean (e.g., Ferro et al.,
2005; Katz and Brown, 1992; Meehl et al., 2000). Katz and Brown
(1992) showed that the changes in the frequency of extreme
events are more dependent on the variability of the climate than
its mean—the dependence increases as the events become more
extreme. They verified the theoretical results on daily temperature
series during July from a station in Des Moines, Iowa. They showed
that the probability of extreme temperatures above 38 �C, which
are of particular interest to Iowan farmers, increases (decreases)

more than twice with variance increases (decreases) as compared
to the similar changes in the mean. Schar et al. (2004) showed that
the extreme heat wave of 2003 is not explained by a change in
mean only, but by accounting for increased variability over time.
They further noted that the European summer climate may expe-
rience substantial increases in year-to-year climate variability in
the future. Brown and Lall (2006) argued that rainfall variability
has been overlooked in devising plans for water sustainability. In
understanding the role of water in the economic development,
they showed that rainfall variability is a key factor that governs
per capita gross domestic product of the nations—poor nations
tend to have higher rainfall variability. Recently, Veldkamp et al.
(2015) estimated the contribution of annual hydro-climatic vari-
ability to the regional and global water scarcity (measured in terms
of water shortage and water stress). They concluded that hydro-
climatic variability is the largest driver of change in yearly water
scarcity, and that it is necessary to include it in water scarcity
assessments. Many other studies stress the need to understand
variance changes, especially when dealing with future climate
(e.g., Ferro et al., 2005; Hansen et al., 2012; Mason and Calow,
2012).

While detecting changes in the mean is an important step
toward correct inference, it is also critical to detect change points
in variance. Therefore, the focus of this study is the detection of
non-stationarities associated with the presence of abrupt changes
in variance. These shifts are common in hydrology and can be asso-
ciated, for instance, with the construction of dams and reservoirs,
and changes in water policies and regulations, which take place
over a relatively short period of time (e.g., McCabe and Wolock,
2002; Smith et al., 2010; Villarini et al., 2009a). Villarini et al.
(2009a) analyzed annual peak flows from 50 stations over the con-
terminous United States that had a record of at least 100 years.
They showed that the changes in streamflow were abrupt rather
than gradual, and that apparent trends in the data were often
caused by unidentified abrupt change points. In addition to
streamflow, many studies point to abrupt changes in precipitation.
Abrupt changes in the climate system have been shown to have
rapid impact on precipitation extremes in certain regions (Chen
et al., 2014; Zhang et al., 2014, 2009).

The negative effects of abrupt changes in mean and variance on
flood frequency analysis are further exemplified in Fig. 1, which
focuses on annual maximum discharge records for the Congaree
River at Columbia, S.C. [U.S. Geological Survey (USGS) station ID
02169500]. The river flow has been regulated since October 1929
by the operation of the Saluda Dam at Lake Murray (Conrads
et al., 2008). In the top panel of Fig. 1, change points in mean
and variance are detected using Lombard test (Lombard, 1987;
consult next section for more details on this test). The location of
the change point in mean is estimated to be 1929, consistent with
the year in which the Saluda Dam started operating. The location of
the change point in variance is estimated to be 1935. The bottom
panel of Fig. 1 shows the empirical cumulative distribution func-
tion (CDF) of the annual maximum peak discharge before and after
the year of the change in variance. The shifts in the first two
moments have caused a major change in the magnitude of large
return period floods; for example, the 10-year flood magnitude
before the change point has reduced to less than half after the con-
struction of the dam (bottom panel).

For the detection of change points in variance, Bayesian, likeli-
hood, and rank-based non-parametric approaches have been sug-
gested. Before using a particular test or method, however, it is
important to examine its performance so that users have some
knowledge about the strengths, weaknesses and range of applica-
bility of these tools. The objective of this paper is to evaluate the
Lombard test (Lombard, 1987) for the detection of change points
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