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s u m m a r y

Microbial contamination of surface waters, a substantial public health concern throughout the world, is
typically identified by fecal indicator bacteria such as Escherichia coli. Thus, monitoring E. coli concentra-
tions is critical to evaluate current conditions, determine restoration effectiveness, and inform model
development and calibration. An often overlooked component of these monitoring and modeling activi-
ties is understanding the inherent random and systematic uncertainty present in measured data. In this
research, a review and subsequent analysis was performed to identify, document, and analyze measure-
ment uncertainty of E. coli data collected in stream flow and stormwater runoff as individual discrete
samples or throughout a single runoff event. Data on the uncertainty contributed by sample collection,
sample preservation/storage, and laboratory analysis in measured E. coli concentrations were compiled
and analyzed, and differences in sampling method and data quality scenarios were compared. The anal-
ysis showed that: (1) manual integrated sampling produced the lowest random and systematic uncer-
tainty in individual samples, but automated sampling typically produced the lowest uncertainty when
sampling throughout runoff events; (2) sample collection procedures often contributed the highest
amount of uncertainty, although laboratory analysis introduced substantial random uncertainty and
preservation/storage introduced substantial systematic uncertainty under some scenarios; and (3) the
uncertainty in measured E. coli concentrations was greater than that of sediment and nutrients, but
the difference was not as great as may be assumed. This comprehensive analysis of uncertainty in
E. coli concentrations measured in streamflow and runoff should provide valuable insight for designing
E. coli monitoring projects, reducing uncertainty in quality assurance efforts, regulatory and policy deci-
sion making, and fate and transport modeling.

Published by Elsevier B.V.

1. Introduction

The presence of pathogens in surface waters is increasingly a
concern in the United States and worldwide, with fecal indicator
bacteria (FIB) typically being used to indicate the presence of fecal
matter in surface waters and the associated risk of pathogen con-
tamination. Case in point, more stream and river miles were
impaired due to pathogens (as inferred by high FIB concentrations)
than any other pollutant in the United States Environmental

Protection Agency’s (USEPA) national summary of data collected
from states under sections 305(b) and 303(d) of the Clean Water
Act (USEPA, 2014). Since 1995, this has led to more Total Maximum
Daily Loads (TMDLs) being developed in the United States for indi-
cator bacteria than any other impairment (USEPA, 2014). Such pol-
lution is not unique to the United States, with similar concerns
being present from Australia’s Yarra River (Daly et al., 2013) to
the Seine River Estuary in France (Garcia-Armisen et al., 2005).

Modeling is a primary component of TMDL development, and
similar watershed management plan development worldwide,
with models being calibrated and validated using field-collected
flow and water quality data. The output from these efforts is used
for determining source load allocations (i.e., allowable pollutant
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loads exported to the impacted surface water by various sources in
the watershed). There are inherent errors associated with field
monitoring, and TMDLs are required to include some margin of
safety in these source load allocations due to the uncertainty pre-
sent in these data (40 CFR 130.7). Further, optimal water quality
monitoring can only be achieved if uncertainty in measurements
and alternatives to reduce it are considered in sampling design
and implementation (Beven, 2006; Harmel et al., 2006a, 2006b;
Rode and Suhr, 2007). This is rarely the case with routine monitor-
ing conducted by regulatory entities, despite the recognition of the
importance of measurement uncertainty. In addition, little
research has been performed to determine the uncertainty associ-
ated with monitoring FIB in streams and stormwater runoff. Due to
this lack of information, relatively arbitrary margins of safety are
currently employed to account for variability. Studies such as
Hession et al. (1996) have indicated that uncertainty and risk anal-
ysis are a vital part of TMDL development. Thus, defining the
uncertainty associated with FIB monitoring is a critical need that
will improve the scientific basis of pathogen regulation, policy,
modeling, and watershed plan development and implementation.

Fecal indicator bacteria are generally used instead of specific
pathogens because of the large number of potential waterborne
pathogens, substantial time required and expense of pathogen
analyses, analytical expertise required to perform such analyses,
difficulty determining which pathogens to target, and longer sur-
vivability of indicators (EPA, 2003). Various FIB, including fecal col-
iform, Escherichia coli, and enterococci, are utilized to assess
compliance with water quality standards related to fecal contami-
nation with the FIB of choice varying regionally and by water body
type. In 1986, the USEPA published a report recommending E. coli
or enterococci as a preferred FIB for fresh waters (USEPA, 1986).
Subsequently, E. coli has been more frequently utilized and
researched in fresh waters and is the focal point of this study.

Previous efforts to elucidate the uncertainty associated with
water quality sampling and analysis have focused on nutrients
and sediment (Harmel et al., 2006b, 2009). Harmel et al. (2006b)
compiled error sources associated with flow measurement, sample
collection, sample preservation/storage, and laboratory analysis for
total suspended solids and various nutrient species. The total error
accompanying these elements was compiled using the root mean
square error propagation methodology (Topping, 1972). Harmel
et al. (2006b) estimated the uncertainty of storm concentrations
to be ±15% for total suspended sediment, ±14% for NO3-N, ±20%
for PO4-P, ±27% for total N, and ±29% for total P. Using a similar
methodology, McCarthy et al. (2008) conducted the only known
comprehensive uncertainty analysis of field-collected E. coli data.
Their results showed an average uncertainty of ±33% and a range
of ±15–67%. However, because uncertainty varies based on the
method of data collection, storage, and analysis, further research
is needed to understand the uncertainty of additional monitoring
regimes not analyzed by McCarthy et al. (2008). The Harmel
et al. (2006b) and McCarthy et al. (2008) studies noted that ‘‘ran-
dom” effects or sources of uncertainty are typically bi-directional
and appropriately represented by the normal distribution.

The objective of this study was to expand on previous urban
stormwater work by McCarthy et al. (2008) by compiling a more
comprehensive collection of uncertainty data related to E. coli con-
centrations measured in streamflow and runoff. Specifically, uncer-
tainty contributed by sample collection, sample preservation and
storage, and laboratory analysis in measured E. coli data were com-
piled and presented using the theoretical framework established
by Harmel et al. (2006b) and McCarthy et al. (2008). Similarly,
the differences in sampling method and sample type (individual
discrete and runoff event) were compared.

Similar to Harmel et al. (2006b), the analysis applies principally
to edge-of-field runoff (<50 ha) and streamflow in small water-

sheds (<10,000 ha). On larger streams and rivers with perennial
flow, additional considerations such as diurnal fluctuations,
groundwater contribution, freshwater and saltwater interaction,
and point sources such as waste water treatment plant outfalls
would need to be considered. Lastly, the terms ‘‘error” and uncer-
tainty are used synonymously herein to represent random and sys-
tematic statistical variation. Human error and equipment
malfunction are not considered.

2. Materials and methods

2.1. Compilation of uncertainty data

An exhaustive literature search was performed to collect and
compile data pertaining to measurement uncertainty for determi-
nation of E. coli concentrations in runoff and streamflow from small
watersheds (inclusion of sources of spatial and temporal variability
that contribute to uncertainty in data sets from long-term and/or
multi-location monitoring projects was outside the scope of the
present analysis). Then uncertainty estimates were determined
as described in Table 1. These data/results were used to populate
Tables 2–4, which present uncertainty estimates for steps/proce-
dures within the major procedural categories (i.e., sample collec-
tion, sample preservation/storage, laboratory analysis)
established by Harmel et al. (2006b). The distributional parameters
presented in Tables 2–4 (usually the average and standard devia-
tion) were used in the subsequent estimation of uncertainty con-
tributed by each of the procedural categories and in the overall
measured E. coli concentrations.

Harmel et al. (2006b, 2009) assumed that measurement uncer-
tainty in water quality data collection was random, bi-directional
(equally likely to be positive or negative), and normally dis-
tributed. These assumptions are valid for sources of ‘‘random”
uncertainty in the present analysis of the uncertainty associated
with individual E. coli concentrations, whether individual discrete
samples or throughout a single storm runoff event. It is important
to note that this assumption does not apply to populations or sets of
E. coli data, which are often asymmetric. In contrast to Harmel
et al. (2006b), the present analysis also assessed several sources
of ‘‘systematic” uncertainty that introduced directional bias and
are not appropriately represented by the normal distribution. To
accommodate both types of uncertainty, uncertainty sources were
separated based on whether they introduce random or systematic
uncertainty (Tables 2–4).

2.2. Estimation of uncertainty in each procedural category and in
measured E. coli concentrations

With the uncertainty estimates for individual steps or procedu-
ral categories, the random uncertainty in each procedural category
and in measured E. coli concentrations was estimated with the
method of Topping (1972) adapted as shown in Eq. (4). These
results represent the cumulative random uncertainty such that
over-estimation and under-estimation are equally likely; therefore,
the resulting uncertainty is presented as ±%.
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Then, the influence of systematic uncertainty was included as
the sum of uncertainty in individual steps or processes that con-
tributed to over- or under-estimation. The systematic uncertainty
thus shifted the random uncertainty by the appropriate direction
to achieve an overall uncertainty estimate.
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