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s u m m a r y

Use of a proxy model in gradient-based calibration and uncertainty analysis of a complex groundwater
model with large run times and problematic numerical behaviour is described. The methodology is gen-
eral, and can be used with models of all types. The proxy model is based on a series of analytical functions
that link all model outputs used in the calibration process to all parameters requiring estimation. In
enforcing history-matching constraints during the calibration and post-calibration uncertainty analysis
processes, the proxy model is run for the purposes of populating the Jacobian matrix, while the original
model is run when testing parameter upgrades; the latter process is readily parallelized. Use of a proxy
model in this fashion dramatically reduces the computational burden of complex model calibration and
uncertainty analysis. At the same time, the effect of model numerical misbehaviour on calculation of local
gradients is mitigated, this allowing access to the benefits of gradient-based analysis where lack of integ-
rity in finite-difference derivatives calculation would otherwise have impeded such access. Construction
of a proxy model, and its subsequent use in calibration of a complex model, and in analysing the uncer-
tainties of predictions made by that model, is implemented in the PEST suite.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Environmental models that simulate the details of complex
physical and chemical processes over domains wherein the proper-
ties which govern those processes are spatially and temporally
heterogeneous are often characterized by long run-times and a
propensity for problematic solver convergence. Furthermore, it is
not uncommon for models of these types to exhibit good numerical
behaviour when provided with one set of parameters, but suffer
serious degradation of numerical performance when supplied with
another set of parameters. Where this occurs, calibration and
uncertainty analysis become very difficult undertakings. This can
erode the use of such models in environmental decision-support.

In the present paper we focus on those aspects of a model’s per-
formance which compromise the ability of a model-independent
inversion package such as PEST (Doherty, 2015a) to calculate
derivatives of model outputs with respect to the parameters which
require adjustment during calibration, and calibration-constrained
uncertainty analysis. In PEST, derivatives are calculated using a
finite-difference methodology based on a two, three or five point
stencil. Model outputs are computed based on values of a

particular parameter which are varied incrementally in accordance
with the selected stencil; differences in these outputs form the
basis for approximation of local partial derivatives with respect
to that parameter. These derivatives are housed in a so-called Jaco-
bian matrix. The Jacobian matrix is then employed in calculation of
an improved set of parameters. Jacobian matrix and parameter
upgrade calculations are undertaken repeatedly in an iterative pro-
cess whose outcome is a set of parameter values that produce an
acceptable level of fit between model outcomes and field observa-
tions of system state. Where a model is being calibrated, a set of
parameters which constitute a minimum error variance solution
to the inverse problem is sought through this process. Where
calibration-constrained uncertainty analysis is being undertaken,
multiple sets of parameters are sought, all of which are considered
to be reasonable expressions of system properties, and all of which
fit field measurements to within limits that reflect the noise con-
tent of those measurements.

A variety of numerical methods have been developed to expe-
dite calibration and calibration-constrained uncertainty analysis.
Many of these methods do not, in fact, require calculation of a
Jacobian matrix. However, use of so-called ‘‘gradient methods”
which do make use of partial derivatives of model outputs with
respect to adjustable parameters to perform the above tasks
accrues certain benefits. A major benefit that gradient methods
have over other methods is their speed; see, for example Keating
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et al. (2010). Another benefit is that gradient-based inversion algo-
rithms are easily extended to include mathematical regularisation
schemes that readily accommodate parameter nonuniqueness
(Aster et al., 2013; Menke, 1989). A further benefit is that, once a
Jacobian matrix has been filled, it can be used in calculation of
post-calibration statistics such as parameter identifiability
(Doherty and Hunt, 2009), parameter and predictive uncertainty
(Gallagher and Doherty, 2007a, 2007b; James et al., 2009), and
the worth of existing and yet-to-be acquired data in terms of its
ability to reduce the uncertainties of parameter and predictions
of interest (Dausman et al., 2010).

Use of gradient methods is not without its problems, however.
Their performance may be hampered where the relationship
between model outputs and parameters is highly non-linear
(Duan et al., 1992). Even worse, it may not be possible to use these
methods at all where model performance is such that elements of
the Jacobian matrix lose their integrity. Where these elements are
calculated using finite parameter differences, loss of integrity can
occur when incremental changes in model outputs employed in
finite-difference derivatives calculation reflect more than simply
incremental changes in parameter values. This is not an uncom-
mon situation, particularly where the complex nonlinear environ-
mental processes simulated by a model challenges its solver. While
strategies such as adaptive time stepping that alter the solution
procedure when convergence becomes problematic, may mitigate
these problems as far as the model is concerned, they may exacer-
bate them as far as calculation of finite-difference derivatives is
concerned, for model outputs may then become somewhat depen-
dent on solution path.

Examples of modelling contexts in which calculation of finite-
difference parameter derivatives may be compromised are not
hard to find. The handling of ‘‘dry cells” in MODFLOW (Harbaugh
et al., 2000) is a common example. Kavetski et al. (2006) discuss
how algorithmic design of models that simulate surface water
movement can lead to similar problems in these kinds of models.
Other contexts in which model numerical behaviour can compro-
mise finite-difference derived gradients include:

� simulation of the effects of mining and tunnelling operations on
groundwater systems;

� interaction of ground and surface waters near streams and
wetlands;

� high temperature geothermal reservoir simulation where water
phase is a discontinuous function of temperature and pressure;
and

� chemical reactions in mobile contaminant plumes.

In the difficult numerical circumstances that these modelling
contexts present, so-called ‘‘global methods” which do not rely
on calculation of derivatives of model outputs with respect to
adjustable parameters, provide an alternative option for
software-controlled history-matching. Examples of non-gradient
based calibration and calibration-constrained uncertainty analysis
algorithms include (among many others) particle swarm optimiza-
tion (Kennedy and Mendes, 2002), shuffled complex evolution
(Duan et al., 1992), genetic and evolutionary programming
(Vrugt and Robinson, 2007), and covariance matrix adaption algo-
rithms (Hansen et al., 2003). All of these replace the need to calcu-
late derivatives with respect to adjustable parameters with
intelligent random sampling of parameter values. While delivering
robustness in the face of problematical numerical behaviour, the
cost of this robustness is the requirement for a greater number
of model runs than that required by gradient methods. This differ-
ential between model run requirements of the two different
approaches tends to grow with the number of parameters that
require estimation or adjustment.

To ease the computational burden of applying global methods
to the problems of model calibration and calibration-constrained
uncertainty analysis, increasing use is being made of fast-running
model surrogates. In recognition of the fact that the complex sim-
ulator is the most accurate replicator of reality available, in many
applications the surrogate model does not completely replace the
original simulator. Rather it is strategically substituted for the sim-
ulator on many occasions that a model run is required. The greater
is the ratio of surrogate to simulator runs, the greater is the effi-
ciency of the overall process. The surrogate may be a simulator that
runs much faster than that which it replaces because of its simpler
algorithmic design. For example, the SWI package for MODFLOW
(Bakker et al., 2013), which replaces mass conservative governing
equations with equations based on continuity of flow, avoiding
the need for fine-scale vertical discretisation. Another example is
MODFLOW-USG, described by Panday et al. (2013), which is able
to represent flow in grids with highly irregular spatial discretisa-
tion thereby reducing the number of simultaneous equations
required in solution. More sophisticated model reduction strate-
gies may be employed as are used by Efendiev et al. (2005, 2009)
and Mondal et al. (2010) whereby a coarse-gridded simulator
whose parameterization is based on single-phase upscaling proce-
dures, surrogates for a fine scale, dual-phase reservoir model.

Alternatively the surrogate may undertake data-driven repro-
duction of simulator outputs, or interpolate between samples of
simulator outputs to non-sampled parts of parameter space using
devices such as radial basis functions, kriging or artificial neural
networks; see for example, Regis and Shoemaker (2004),
Bliznyuk et al. (2007), and Alam et al. (2004) respectively. More
recently, Laloy et al. (2013) and Elsheikh et al. (2014) deploy poly-
nomial chaos expansion theory to develop interpolators of simula-
tor outputs. Also the statistical characteristics of simulator outputs
can be modelled using Gaussian process theory; see Johnson et al.
(2011) and Conti et al. (2009) as examples. Data-driven surrogates
such as these are commonly known as model emulators or proxy
models.

One analysis scheme that can benefit enormously from simula-
tor run reductions through strategic use of surrogate models is
Markov Chain Monte Carlo (MCMC). Various adaptations of the
so-called ‘‘two-stage MCMC” approach have been documented
(see Efendiev et al., 2005, 2009; Mondal et al., 2010; Cui et al.,
2011 for examples) that seek to reduce unnecessary expensive
simulator runs in assessment of low-probability proposal parame-
ter fields. In these example studies calibration and/or uncertainty
assessment of complex reservoir simulators is undertaken wherein
a surrogate model is used in ‘‘stage one” of the process as a pre-
screening mechanism. The goal is to increase the acceptance rate
of proposed parameter fields in ‘‘stage two” where acceptance/
rejection of the proposal is determined on the basis of the simula-
tor. The studies just mentioned use surrogate models based on
simplified algorithms, as has already been mentioned. The studies
also cited earlier in relation to polynomial chaos expansion theory
(that is Laloy et al., 2013; Elsheikh et al., 2014), also deployed their
model emulators within the two-stage MCMC framework. Two-
stage MCMC consistently demonstrates several fold savings in
computational costs over full/direct MCMC, effected primarily
through inexpensive pre-screening of proposals.

Of course use of a surrogate model, either as a direct substitute
or as a companion to a more accurate simulator, will undoubtedly
incur some cost on the analysis undertaken. Put simply, a simpli-
fied model cannot be expected to replicate the same level of accu-
racy at all spatial and temporal locations of a modelled domain as
can a simulator. It is readily acknowledged in the literature of two-
stage MCMC cited above, that there exists potential for rejection of
parameter proposals in the pre-screening stage of the process
when assessed by the surrogate, that would otherwise find support
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