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The identification of critical source areas (CSAs) is a precondition for non-point source (NPS) pollution
control at a basin scale, especially in areas with limited resources. Based on the Soil and Water
Assessment Tool (SWAT), nutrient loads coupled with population density and water quality requirements
are regarded as multi-factors for CSAs identification in Xiangxi river watershed, the first tributary of the
Yangtze River. The results based on the calibrated model found that the subbasins heavily and seriously
polluted by nutrient loads were different from the subbasins identified as CSAs, demonstrating integrat-
ing socio-economic factors like population density and water quality requirements to identify CSAs is of
much necessity. The CSAs occupied 19.7% of the total subbasins, and accounted for 53% total nitrogen
loads, 54% total phosphorus loads and 36% of the total population. Considering the model calibration
and validation will take a long time as well as data deficiency in some subbasins, the influence of uncal-
ibrated SWAT on CSAs identifications was discussed. The comparative results between CSAs identification
with calibrated and uncalibrated SWAT model revealed that model calibration had little effect on nutri-
ents distribution and CSAs locations in the study area. Uncalibrated SWAT model may be applied when
the research objective is less related to model calibration. The results will be greatly effective for CSAs
identification and NPS pollution control at a basin scale.
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1. Introduction

Influenced by soil type, topography, land use, climate, hydrol-
ogy, management and many other factors, non-point source
(NPS) pollution typically presents a spatial and intermittent distri-
bution (Arabi et al., 2006). Unlike point source (PS) pollution, NPS
usually comes from diffuse sources, such as agricultural activities
and animal breeding, which is difficult to be defined (Ongley
et al.,, 2010). Nowadays, NPS pollution has aroused increasing
attention around the world (Schaffner et al., 2009; Ongley et al.,
2010; Duncan, 2014). In U.S., approximately 60% of water body
impairments are due to NPS pollution (U.S. Environmental
Protection Agency, 2013). The pollution situation of NPS in China
also faces great challenges (Shen et al., 2012). The excessive inputs
of chemical fertilizers and pesticides and other agriculture activi-
ties have been regarded as the most important sources for NPS pol-
lution in China as well as other countries (Shen et al.,, 2012;
Duncan, 2014; Huang et al.,, 2015).

Centralized processing is difficult to be applied for NPS pollu-
tion control since significant spatial difference among pollution
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loads of various landscape units (Behera and Panda, 2006;
Ballantine et al., 2009). Some subbasins contribute more sediments
and nutrients losses due to the different local weather, hydrologi-
cal and topographical conditions, land management practices and
agricultural activities (Ning et al., 2006; Ouyang et al., 2008). These
areas are often referred to as critical source areas (CSAs) (Shore
et al., 2014; Winchell et al., 2015). CSAs have been widely studied
as the optimal locations for cost-effective management practices of
subbasins (Keller and Cavallaro, 2008; Huang et al., 2015). Of all
these studies, CSAs identification has played a significant role
(Ouyang and Wang, 2008; Winchell et al., 2015). When resources
are limited, CSAs identification toward NPS pollution control can
be more instructive (Makarewicz, 2009).

CSAs identification is usually based on sediment and nutrient
loads (Ouyang et al., 2008; Huang et al., 2015; Winchell et al.,
2015). Total nitrogen (TN) and total phosphorus (TP) loads are
two major water quality indexes in water environment assessment
(Jeon et al., 2010). Eutrophication caused by excess nitrogen and
phosphorus will aggravate algal bloom and result in other prob-
lems such as odor, low dissolved oxygen and the disorder of
ecosystem functions (Gurung and Ankumah, 2013). Though nutri-
ent loads as pollution source take a great effect on CSAs location,
other factors such as population density and water quality require-
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ments are also highly associated (Tang et al., 2013; Pongpetch
et al,, 2015). Population is closely related to environment, and high
population density could increase the pressure on aquatic environ-
ment (Ouyang and Wang, 2008; Chatterjee et al., 2015). Moreover,
the subbasins with higher water quality requirements demand
more rigid control standards than those with lower quality
requirements, though all of the subbasins have been equally pol-
luted (Maksimov et al., 2009; Rudolph, 2015). CSAs identification
considering multi-factors which was defined as the combination
of nutrient loads, population density and water quality require-
ments will be more accurate and accord with the demand of the
social economic benefits.

Among all the factors for CSAs identification, nutrient loads are
best estimated through regular monitoring in the field and source
tracking techniques, which is usually labor-intensive and time-
consuming (Thompson et al., 2013). As an alternative, distributed
and process-based models have been widely introduced for nutri-
ent loads estimation (Singh et al., 2012). In previous studies, mod-
els such as Soil and Water Assessment Tool (SWAT), agricultural
non-point source pollution and AnnAGNPS (AGNPS), and areal
non-point source watershed environment response simulation
(ANSWER), have been commonly applied (Noll and Magee, 2009;
Shen et al., 2012; Ramos and Martinez-Casasnovas, 2015). How-
ever, distributed and process-based models, such as SWAT, require
a large number of good quality, spatially disaggregated data for
model calibration and validation, and the process usually takes a
long time (Panagopoulos et al, 2011; Huning and Margulis,
2015). Some subbasins restricted by geographical or economic con-
ditions, especially in China, are lack of observed data (Chen et al.,
2011; Prabhanjan et al., 2014). Data deficiency makes these models
difficult to be implemented. Given the long time cost and data lim-
its, uncalibrated SWAT model has been tried to identify CSAs of
sediment, TN and TP (Niraula et al.,, 2012). In the following year,
the identified CSAs have been modestly verified with observed
data by comparing SWAT with Generalized Watershed Loading
Function (GWLF) (Niraula et al., 2013). But the popularization of
uncalibrated SWAT model on CSAs identification has yet to be fur-
ther studied in other areas.

In this study, the Xiangxi River watershed (XXRW), a catchment
in the Three Gorges Reservoir Area of China, is selected as the study
region to identify CSAs using SWAT based on multi-factors. The
objectives of this study are set to (1) estimate TN and TP nutrient
loads; (2) identify CSAs with multi-factors using calibrated SWAT;
(3) discuss the impact of parameter calibration on CSAs identifica-
tion with multi-factors.

2. Materials and methods
2.1. Study area

The XXRW is located between 110.47° and 111.13° E, 30.96°
and 31.67° N in the Hubei portion of the Three Gorges Reservoir.
The drainage area controlled by the Xingshan hydrological gauge
was selected as the study catchments, covering approximately
2995 km? (Fig. 1). Three important tributaries are included:
Nanyang, Gufu and Gaolan. The river is 94 km long and the eleva-
tion ranges between 110 m and 3088 m. XXRW is located in humid
subtropical monsoon climate zone, characterized by hot and
humid summer, cold and dry winter. The annual average precipita-
tion and temperature is 1015 mm and 16.6 °C. XXRW has typical
mountainous landscapes and is comprised of approximately
70.9% forests, 6.5% farmland, 5.3% water, 4.4% wasteland. The study
area, which is the first tributary affected by the impoundment of
Three Gorges Reservoir, is only 38 km away from the Three Gorges
Dam.

In recent years, affected by the relocation and metro construc-
tion, coupled with the influence of the special geographical envi-
ronment and geological disasters caused by frequent flood,
landslide, and debris flow, the ecological environment in the basi-
nis faced with great challenges (Liu et al., 2013). Additionally,
influenced by agricultural non-point source (ANPS) pollution, the
agricultural source of TN and TP increased by 38.0% and 85.1%
respectively from 2007 to 2013 (Liu et al., 2014). Livestock and
poultry manure pollution is another main NPS pollution source
in XXRW (Cui et al., 2015).

2.2. SWAT model and input data

SWAT is a typically semi-distributed, physically based NPS pol-
lution model, which was originally developed by United States
Department of Agriculture-Agriculture Research Service (USDA-
ARS) (Arnold et al., 1998). It was primarily designed to predict
the impact from different soils, land use and land management
practices on water and sediment at watershed scale over long peri-
ods (Kiniry et al., 2005). In addition, SWAT has become an effective
tool in the simulation of nutrients distribution and identification of
CSAs for a few years (Kirsch et al., 2002; Srinivasan et al., 2005;
Ouyang et al., 2008).

The major model inputs consist of topography, soil properties,
land use/cover type, weather/climate data (precipitation, tempera-
ture, solar radiation, wind speed, and relative humidity), and land
management practices (Kiniry et al., 2005). The basin is subdivided
into subbasins and each subbasin is further divided into hydrolog-
ical response units (HRU) based on homogeneous topography, land
use and soil (Tian et al., 2012). The flow generation, sediment yield,
and NPS pollution loads are computed separately at the HRU level
and then summed together to determine the total loads from the
subbasin (Ouyang et al., 2008). The data inputs in this study were
listed in Table 1.

2.3. Model calibration and validation

Distributed hydrological models usually need to introduce large
amounts of parameters to describe basin characteristics (Kang and
Lee, 2014). Selecting rational parameters is critically important for
SWAT application, and calibration and validation could improve
SWAT performance (Pokhrel and Gupta, 2010; Malago et al.,
2015). However, it is almost impractical to calibrate every param-
eter when SWAT is applied. Latin Hypercube Sampling (LHS) com-
bining one-at-a-time (OAT) was carried out in this study to
determine the most sensitive parameters for calibration (You
et al,, 2012).

SWAT model was parameterized at XXRW and run from 2006 to
2010. Monthly observed data of flow, TN and TP without separat-
ing the organic nutrients from mineral components in 2006-
2008 and 2009-2010 were used for model calibration and valida-
tion, respectively. The method of the sequential uncertainty fitting
algorithm (SUFI2) provided by SWAT-CUP was adopted for calibra-
tion and validation procedure. SUFI2 method takes the uncertainty
of data into consideration, and selects a group of parameters sys-
tematically according to certain regulations automatically to make
the objective function optimal (Abbaspour et al., 2001, 2004). Var-
ious hydrologic and water quality parameters changed to best fit
the observed data within their ranges.

The performance of SWAT was evaluated by some indicators,
including percent bias (pb), coefficient of determination (R?) and
Nash-Sutcliffle efficiency (NSE) (Moriasi et al., 2007; Niraula
et al., 2012).
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