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s u m m a r y

It remains challenging to determine the unknown free surface in three dimensional unconfined seepage
in earth dams. A number of iterations are frequently required which make the problem computationally
expensive. In the present research, a weak form quadrature element formulation is presented for three
dimensional analysis of unconfined seepage which is an extension of the recently established method
for two dimensional seepage problems. ‘‘Free points” are introduced by the interpolation of which the
free surfaces are smoothly approximated. Grid lines are constructed in the element and the ‘‘free points”
are confined to the lines when updated. An interpolatory scheme for locating the exit points is proposed.
Formulations and procedures of the method are given in detail. Results of numerical examples are
compared with available analytical solutions and numerical solutions in the literature and agreement
is reached demonstrating the efficiency and reliability of the present formulation.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Seepage analysis has found widespread applications in the
fields of civil engineering, oil engineering, environmental engineer-
ing, etc. The most difficult step in unconfined seepage problems is
to find the location of the free surface which is unknown before
computation and must be determined by iterative process. Closed
form solutions are hardly available for the complexity of practical
problems. So far, numerical methods have been widely applied to
deal with unconfined seepage problems such as the finite element
method (Bathe and Khoshgoftaar, 1979; Chung and Kikuchi, 1987;
Lacy and Prevost, 1987; Gioda and Gentile, 1987; Ahmed and
Bazaraa, 2009; López-Querol et al., 2011; Kazemzadeh-Parsi and
Daneshmand, 2012, 2013), the boundary element method
(Chang, 1988; Rizos and Karabalis, 1992), the finite difference
method (Lee and Leap, 1997; Koo and Leap, 1998), and the finite
volume method (Darbandi et al., 2007; Bresciani et al., 2012).

Those numerical methods can mainly be put into two cate-
gories, namely, adaptive mesh algorithms (Chung and Kikuchi,
1987; Fenton and Griffiths, 1997; Darbandi et al., 2007; Ouria

and Toufigh, 2009; Shahrokhabadi and Toufigh, 2013), and fixed
mesh algorithms (Bathe and Khoshgoftaar, 1979; López-Querol
et al., 2011; Kazemzadeh-Parsi and Daneshmand, 2012). In adap-
tive mesh approaches, computation is based on the domain below
the free surface that varies during the iterative process. In fixed
mesh techniques, however, the whole domain is considered and
the free surface is dealt with by setting different soil properties
for the parts below and above the free surface. Essentially, the
geometrical nonlinearity involved in the problem is transformed
into material nonlinearity in fixed mesh methods. Generally, high
accuracy is achieved by the first type as the real field is considered
and the meshes conform to the free surface. However, requirement
of computational resource is made large due to regeneration of
meshes. Mesh distortion may occur in the neighborhood of the free
surface leading to high numerical errors to appear. Relatively, the
fixed mesh methods are stable and can be applied to coupled
analysis of flow and deformation in the whole solution domain.
Nevertheless, most fixed mesh methods are inflicted by the
requirement of advanced theories which are unfamiliar to engi-
neers (Bresciani et al., 2012), and low accuracy is obtained.

The weak form quadrature element method (QEM) is a high
order numerical algorithm with rapid convergence as compared
with the finite element method (Zhong and Yu, 2007; Mo et al.,
2009; Zhong and Gao, 2010; Zhong and Wang, 2010; He and
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Zhong, 2012). In the QEM, large elements are used and accuracy
can be improved by increase of the approximation order. The
method has recently been applied to two dimensional unconfined
seepage in earth dams with very simple geometric shapes (Yuan
and Zhong, 2015). In the present research, a three dimensional
weak form quadrature element formulation using adaptive mesh
is presented for unconfined seepage in earth dams with arbitrary
shapes. ‘‘Free points” are introduced by the interpolation of which
the free surfaces are smoothly approximated. Grid lines similar to
those ‘‘vectors” in Kazemzadeh-Parsi and Daneshmand (2012) and
‘‘straight lines” in Fenton and Griffiths (1997) are constructed and
the ‘‘free points” are confined to the lines when updated. Based on
the element, grid lines in the present formulation are widely appli-
cable as compared with those in the literature. An interpolatory
scheme for locating the exit points is proposed. By using large ele-
ments, mesh distortion can be alleviated and the numerical imple-
mentation is straightforward and simple. Formulations and
procedures are given in detail. Results of numerical examples are
compared with available analytical solutions and numerical solu-
tions in the literature and agreement is reached demonstrating
the efficiency and reliability of the present formulation.

2. Formulation

2.1. Problem statement

The differential equation for steady seepage is the combination
of Darcy’s law and continuity of pore fluid:

divðKrhÞ ¼ 0 ð1Þ

where K is the permeability matrix. h, the total head or piezometric
head, is defined as

h ¼ zþ p
qg

ð2Þ

where z is the elevation head above a chosen datum, p is the pore
pressure, q is the density of the liquid, and g is the acceleration
due to gravity. For isotropic soils the equation becomes

r2h ¼ 0 ð3Þ
A typical three dimensional seepage problemwith a free surface

is shown in Fig. 1.

Generally, boundary conditions of the problem can be classified
into four types (see Fig. 1):

A. Prescribed total head boundary conditions on the upstream
and downstream surfaces

h ¼ Hu on Cu ð4Þ

h ¼ Hd on Cd ð5Þ
B. Prescribed flux boundary conditions
vn ¼ 0 on Cv ð6Þ

C. Seepage surface

h ¼ z on Cs ð7Þ
D. Free surface

h ¼ z on Cf ð8Þ

vn ¼ 0 on Cf ð9Þ
where vn is the normal velocity. Two boundary conditions are given
on the free surface, only one of which is applied for solution and the
other is used to update the vertical position of the ‘‘free points”.

2.2. Weak form quadrature element formulation

The weak form description of Eq. (1) is obtained by the principle
of virtual work asZ
An

dhvndAþ
Z
V

rdhð ÞTKrhdV ¼ 0 ð10Þ

where An is the surface with prescribed normal velocity and V is the
solution domain under the free surface.

In the QEM, the problem domain is first discretized into a few
subdomains (elements) where numerical integration can be car-
ried out. Then every subdomain is transformed onto the standard
computational domain, i.e.

x ¼ xðn;g; 1Þ
y ¼ yðn;g; 1Þ
z ¼ zðn;g; 1Þ

8><
>: � 1 6 n;g; 1 6 1 ð11Þ

where x, y and z are coordinates in physical domain; n, g and 1 are
coordinates in the standard domain. With the chain rule of
differentiation
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where J is the Jacobian matrix. Introduction of Lobatto quadrature
into Eq. (10) yields
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Fig. 1. Three dimensional unconfined seepage.

404 S. Yuan, H. Zhong / Journal of Hydrology 533 (2016) 403–411



Download English Version:

https://daneshyari.com/en/article/6410521

Download Persian Version:

https://daneshyari.com/article/6410521

Daneshyari.com

https://daneshyari.com/en/article/6410521
https://daneshyari.com/article/6410521
https://daneshyari.com

