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s u m m a r y

This paper presents a new laboratory sand flume dataset on the propagation of groundwater waves in an
unconfined sandy aquifer with a vertical boundary subject to simple harmonic forcing with a wide range
of oscillation period from 10.7 s to 909 s. The data is unique in that it covers a much wider range of
non-dimensional aquifer depths, nxd/K (where n is the porosity,x is the angular frequency, d is the aqui-
fer depth and K is the hydraulic conductivity) than has been previously investigated. Both the amplitude
decay rate and rate of increase in phase lag of the water table waves are observed to monotonically
increase with increasing oscillation frequency (increasing nxd/K). This is in contrast to existing theoret-
ical dispersion relations which predict: (1) zero phase lag or standing wave behaviour and (2) an asymp-
totic decay rate as the frequency increases. Possible influences on the experimental data including sand
packing, measurement location, finite amplitude wave effects, unsaturated zone truncation and multiple
wave mode effects are unable to explain the discrepancy. The data was also compared against numerical
solutions of Richards’ equation with and without hysteresis and in both cases, the same qualitative beha-
viour as the analytic solutions described above is found. The discrepancy between data and predictions
remains unexplained and highlights a knowledge gap that requires further investigation. These findings
relate directly to practical applications in the field of surface–groundwater interactions such as the influ-
ence of wave forcing of coastal aquifers on contaminant transport, sediment mobility and salt-water
intrusion all of which are influenced by the dispersion of the groundwater wave.

Crown Copyright � 2015 Published by Elsevier B.V. All rights reserved.

1. Introduction

Coastal aquifers around the world are exploited by a range of
uses including agriculture, potable water supply and waste water
disposal and these aquifers are subject to the influence of ground-
water waves induced by oceanic oscillations (waves and tides). The
propagation of groundwater waves has been shown to have impor-
tant implications for the mixing of oceanic and sub-surface water
masses at the coastal margin (e.g. Li et al., 1999; Robinson et al.,
2006; Xin et al., 2010) and also the mobility of sediments on bea-
ches (e.g. Elfrink and Baldock, 2002; Xin et al., 2010; Bakhtyar
et al., 2011). In particular, the speed of propagation and decay of
the water table wave will dictate the magnitude and variation in
hydraulic gradients near the boundary which in turn control flow

rates and thus the extent of mixing processes such as salt-water
intrusion and contaminant transport.

The dispersion of groundwater waves has received theoretical
attention in the literature including the influence of non-
hydrostatic pressure and capillarity. The simplest case is that of
simple harmonic forcing of an unconfined aquifer across a vertical
interface,

ho ¼ dþ A cosðxtÞ ð1Þ
where ho is the driving head [L], d is the mean driving head [L], A is
the driving head amplitude [L] and x = 2p/T [T�1] is the oscillation
frequency and T is the oscillation period [T]. Under the assumption
of small-amplitude oscillations (A� d), the form of the water table
wave in response to this forcing is (e.g. Steggewentz, 1933; Parlange
et al., 1984; Nielsen, 1990; Barry et al., 1996; Li et al., 2000b),

gðx; tÞ ¼ ARefe�kxeixtg ¼ ARefe�ðkrþikiÞxeixtg
¼ Ae�krx cosðxt � kixÞ ð2Þ
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where g is the water table elevation [L] relative to the mean water
level and k = kr + iki is the water table wave number which describes
the dispersive properties of the wave where kr is the decay rate
[L�1] of the water table wave amplitude and ki is the rate of increase
in phase lag [L�1] of the water table wave with increasing distance
landward and i ¼

ffiffiffiffiffiffiffi
�1

p
.

Existing wave numbers derived from experimental (sand flume
and Hele-Shaw cell) and field observations have been limited to
non-dimensional aquifer depths nxd/K < 41 where n is the specific
yield [–] and K is the saturated hydraulic conductivity [LT�1]. To put
these values into context, a groundwater wave induced by a semi-
diurnal tide in a 10 m deep sandy beach aquifer (T = 12.25 h;
n = 0.3; K = 4 � 10�4 m/s) corresponds to nxd/K = 1.1 whereas a
10 s wave forcing the same aquifer corresponds to nxd/K = 4700.
That is, existing theories on water table wave dispersion are yet
to be tested against data on the propagation of high frequency
groundwater waves (large nxd/K). This paper addresses this gap
in knowledge and presents a comprehensive new database of wave
numbers derived from controlled sand flume experiments with an
experimental parameter range of 4 < nxd/K < 415.

2. Existing analytical dispersion relations

The following sections summarise the theoretical development
in the literature that has led to a range of water table wave disper-
sion relations based on the consideration of different physical
influences such as vertical flows (non-hydrostatic pressure) and
capillarity. All are based on the assumption of small amplitude
waves propagating in a homogeneous, isotropic aquifer.

2.1. Shallow, capillarity free aquifer

The simplest theory stems from the assumptions of a shallow
(i.e. hydrostatic pressure), capillarity free aquifer which leads to
the ‘‘Bousinessq” wave number valid for nxd/K� 1 (e.g. Todd,
1959),

kd ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
i
nxd
K

r
ð3Þ

That is, the shallow aquifer theory predicts the rate of decay to be
equal to the rate of increase in phase lag (kr = ki). This is in clear
contrast to available field and laboratory data which indicates that
kr – ki (e.g. Nielsen, 1990; Aseervatham, 1994; Kang, 1995;
Raubenheimer et al., 1999; Cartwright et al., 2003, 2004;
Cartwright, 2004).

2.2. Shallow aquifer with capillarity effects

Barry et al. (1996) followed the approach of Parlange and
Brutsaert (1987) and applied the non-hysteric Green and Ampt
(1911) model of the capillary fringe to correct the shallow aquifer
theory for capillarity effects and found,

kr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx
2d

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ xnHw

� �2q þ xnHw

K2 þ xnHw
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2
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3
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vuuuut ð4Þ

ki ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx
2d

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ xnHw

� �2q � xnHw

K2 þ xnHw
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vuuuut ð5Þ

where Hw is the equivalent saturated height of the capillary fringe
[L] which is found by integrating the effective saturation from the
water table upwards,

Hw ¼
Z 1

h

h� hr
hs � hr

dz ð6Þ

where h is the water table elevation [L], z is the elevation [L] and h is
the volumetric water content [–] and the subscripts s and r denote
saturated and residual quantities respectively.

In essence, the work of Barry et al. (1996) demonstrates that the
presence of moisture above the water table acts to reduce the dis-
persion of the water table wave (slower rates of decay and phase
lag increase). In other words, the wave number k is smaller with
capillarity effects than without.

2.3. Non-shallow, capillarity free aquifer

Building on from the experimental Hele-Shaw cell work of
Aseervatham (1994), Nielsen et al. (1997) developed a theory
quantifying the influence of vertical flow effects (non-hydrostatic
pressure) on periodic groundwater flow. First a 2nd order (in
nxd/K) dispersion relation was derived as,

kd ¼
ffiffiffi
3
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

3
i
nxd
K

rs
ð7Þ

which was then extended to infinite order,

kd tan kd ¼ i
nxd
K

ð8Þ

The implications of the exact solution (Eq. (8)) is that in the high
frequency limit (nxd/K?1): (1) the theory predicts a zero phase
lag (ki = 0) corresponding to a standing wave scenario and (2) the
amplitude decay rate has an asymptotic value of kr = p/2d. The pre-
sent data however will be shown to contradict this with both kr and
ki observed to monotonically increase with increasing nxd/K.

2.4. Non-shallow aquifer with capillarity effects

The non-shallow aquifer theory of Nielsen et al. (1997) (Eq. (8))
was extended to include capillarity effects via theoretical and
empirical approaches as outlined in the following.

2.4.1. The non-hysteretic Green and Ampt model
Li et al. (2000a) adopted the theoretical, non-hysteretic Green

and Ampt (1911) model of the capillary fringe and derived the fol-
lowing modified form of Eq. (8),

kd tan kd ¼ i
nxd

K þ ixnHw
ð9Þ

As per the capillarity free expression (Eq. (8)), in the high frequency
limit this modified equation also predicts zero-phase lag and
asymptotic decay rate.

2.4.2. The hysteretic dynamic effective porosity model
Nielsen and Perrochet (2000a,b) conducted sand column exper-

iments which indicated that the Green and Ampt (1911) model
was unable to replicate the observed relationship between the
total moisture in the column and the water table fluctuations. To
account for this Nielsen and Perrochet (2000a,b) introduced the
concept of a dynamic effective porosity,

nx
@h
@t

¼ n
@htot

@t
ð10Þ

where nx is the dynamic effective porosity [–], h is the water table
elevation [L] and htot is the equivalent saturated height of moisture
in the vertical = d + Hw [L]. nx is complex in nature to account for
the fact that fluctuations in htot are observed to be both damped
(|nx|) and lag (�Arg{nx}) those in the water table h (cf. Fig. 4,
Nielsen and Perrochet, 2000a,b).
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