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s u m m a r y

The contaminant transport process governed by the advection–diffusion equation plays an important role
in modelling industrial and environmental flows. In this article, our aim is to accurately reduce the 2-D
advection–diffusion equation governing the dispersion of a contaminant in a turbulent open channel flow
to its 1-D approximation. The 1-D model helps to quickly estimate the horizontal size of contaminant
clouds based on the values of the model coefficients. We derive these coefficients analytically and inves-
tigate numerically the model convergence. The derivation is based on the centre manifold theory to
obtain successively more accurate approximations in a consistent manner. Two types of the average
velocity profile are considered: the classical logarithmic profile and the power profile. We further develop
the one-dimensional integrated radial basis function network method as a numerical approach to obtain
the numerical solutions to both the original 2-D equation and the approximate 1-D equations. We com-
pare the solutions of the original models with their centre-manifold approximations at very large
Reynolds numbers. The numerical results obtained from the approximate 1-D models are in good agree-
ment with those of the original 2-D model for both the logarithmic and power velocity profiles.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Taylor dispersion model has been extensively applied to
many practical problems of pollutant dispersion in environmental
engineering (Ani et al., 2009; Chatwin and Allen, 1985; Chen, 2013;
Wu and Chen, 2014; Zeng et al., 2014). Taylor (1953, 1954) derived
a partial differential equation which governs the long-term trans-
port of a contaminant in shear flows in a pipe. He assumed that
there is a balance between the dominant processes within the flow
– advection and diffusion. This balance can be explained as fol-
lows: when the contaminant is released into the flow, its concen-
tration changes because of the velocity shear, and at the same
time, it is smeared out across the flow because of the diffusion.
After a long time, the contaminant cloud extends over a long dis-
tance along the pipe, in x-direction. As a result of this combined
action of the advection and diffusion, the concentration variation
in x-direction becomes slow. Taylor (1954) described the dynamics

of this long-term evolution in terms of the depth-averaged concen-
tration, C, by the following 1-D equation

@C
@t
þ U

@C
@x
¼ D

@2C
@x2 ; ð1:1Þ

where D is the constant molecular diffusion coefficient in a laminar
flow; U the mean velocity of the flow; and t the time. Aris, 1956
used a ‘‘concentration moment’’ method and built a new basis for
the Taylor’s analysis by ignoring restrictions on the concentration
distribution. The Taylor’s and Aris’s analyses were extended by
Elder (1959) to describe the longitudinal diffusion in the turbulent
flow in an open channel, based on the von Karman logarithmic
velocity profile. In this work, the longitudinal diffusion coefficient
was deduced to be 5:9v�h, where v� is the friction velocity and h
the channel depth. Experimental investigations conducted by
Sayre and Chang (1968) in laboratory channels revealed that the
diffusion coefficient D is not actually constant and its value varies
from 3 to 13. Such a wide variation is caused by the significant
effect of the velocity variation in the vertical direction. Similar
approximations to these values were derived by Chatwin (1970)
using an asymptotic series analysis. The studies of Taylor and Aris
were followed by extensive research on modelling of dispersion in
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shear flows using a variety of techniques. More details can be found
in Frankel and Brenner (1989), Gill and Sankarasubramanian
(1970), and Smith (1987). As can be seen from these studies, the
longitudinal diffusion is quite sensitive to the vertical distribution
of the velocity.

Using centre manifold theory, Mercer and Roberts (1990)
derived a low-dimensional depth-averaged model as an approx-
imation to the 2-D advection–diffusion equation governing the
longitudinal dispersion of contaminants in a laminar open channel
flow. They conducted an accurate modelling and analytically
deduced higher-order extensions to the Taylor’s Eq. (1.1). They also
derived modified initial conditions that guarantee exponentially
fast convergence of the 1-D and 2-D modelling. In order to increase
accuracy some authors designed zonal models. Chikwendu and
Ojiakor (1985) divided the channel into two zones, with a fast zone
on top of a slow zone at the bottom. They assumed that the con-
taminant is well mixed in each zone, introduced the cross-aver-
aged concentration in each zone and approximated the diffusion
between them by Newton’s law. A system of coupled equations
was empirically derived for the averaged concentrations in the
zones. Later on, Roberts and Strunin (2004) constructed a two-zone
model of contaminant dispersion in a Poiseuille channel flow based
on centre manifolds. The mentioned two-zone models were
applied to laminar flows for which the diffusion coefficient was
assumed to be constant. Strunin (2011) applied the centre mani-
fold theory to turbulent flows and deduced an advection–diffu-
sion–dispersion equation for the depth-averaged concentration
for logarithmic and power velocity profiles. The classical logarith-
mic velocity profile has the form

v ¼ v�
j

ln
v�y
m

� �
þ A; ð1:2Þ

where m is the kinematic molecular viscosity; j the von Karman
constant (j ¼ 0:4) and A an empirical constant. Taking into account
the effects of the viscosity and the Reynolds number in the inertial
layer, Barenblatt (1993, 2000) suggested an alternative power-like
velocity profile,

v
v�
¼ 1ffiffiffi

3
p ln Reþ 5

2

� �
y

3
2 ln Re
þ ; ð1:3Þ

where yþ ¼ v�y=m is the dimensionless cross-flow coordinate; and
Re the Reynolds number. He showed that the scaling law (1.3)
gives an accurate description of the mean velocity distribution
over the self-similar intermediate region adjacent to the viscous
sublayer for a wide variety of boundary layer flows. He also stud-
ied the dispersion for three different configurations of sources
located on the bottom using the power velocity profile
(Barenblatt, 2003) and revealed how these solutions depend on
the Reynolds number.

In the present work, we separately investigate the longitudinal
dispersion of contaminants for the logarithmic and power velocity
profiles, at large Reynolds numbers. The velocity profile is taken to
be either (1.2) or (1.3) across the channel from the bottom, except
for the narrow viscous sublayer near the bottom, to the surface
where waves are neglected. The governing 2-D advection–diffusion
equation has the form

@c
@t
þ vðyÞ @c

@x
¼ @

@y
DðyÞ @c

@y

� �
; ð1:4Þ

where vðyÞ is the velocity directed along the channel; DðyÞ the
coefficient responsible for the turbulent diffusion across the chan-
nel and cðx; y; tÞ the contaminant concentration. Eq. (1.4) is comple-
mented by the no-flux boundary conditions
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y¼h

¼ 0: ð1:5Þ

An expression for the diffusion coefficient DðyÞ is deduced from the
Prandtl formula for the stress (Strunin, 2011),

DðyÞ ¼ Kv2
�

@v=@y
; ð1:6Þ

where K ¼ 1. Eqs. (1.2)–(1.6) form a self-consistent dynamical sys-
tem to be converted into the 1-D equation for the depth-averaged
concentration Cðx; tÞ,

@C
@t
¼ g1

@C
@x
þ g2

@2C
@x2 þ g3

@3C
@x3 . . . ; ð1:7Þ

where g1, g2 and g3 are the coefficients analytically derived by
Strunin (2011) for both the logarithmic and power velocity profiles.
The evolution Eq. (1.7) can be used to roughly predict the spreading
of the contaminants along the channel. The analytically derived
coefficients gn are responsible for the effects of advection, diffusion
and dispersion. They are determined as functions of parameters
characterising the flow such as the Reynolds number and the von
Karman constant j. Even without solving Eq. (1.7), one can quickly
estimate the size of the contaminant cloud based on the coefficients
gn. The characteristic distances over which the substance propa-
gates during a period of time T are (e.g., by dimensional analysis)

L1 ¼ g1T due to the advection; ð1:8Þ
L2 ¼ ðg2TÞ1=2 due to the diffusion; ð1:9Þ
L3 ¼ ðg3TÞ1=3 due to the dispersion: ð1:10Þ

From (1.8)–(1.10), we have g2=g1 ¼ L2
2=L1 and g3=g1 ¼ L3

3=L1.
Therefore, for the same advection distance L1, the larger the ratios
g2=g1 and g3=g1, the larger the effects of diffusion and dispersion.
Mohammed et al. (2014) also derived the coefficient g4 for the loga-
rithmic velocity profile. They employed the one-dimensional inte-
grated radial basis function network (1D-IRBFN) method as a
numerical approach to demonstrate that the solution of the derived
1-D model is in good agreement with that of the original 2-D model.
The 1D-IRBFN and IRBFN-based methods have been successfully
verified through several engineering problems such as viscous flows
(Mai-Duy and Tanner, 2007; Ngo-Cong et al., 2012), natural convec-
tion flows (Ngo-Cong et al., 2012) and structural analysis (Ngo-Cong
et al., 2011).

In the present study, we derive the higher-order coefficients g5

and g6 for the logarithmic profile and the coefficients g4; g5 and g6

for the power profile and investigate the effects of these coeffi-
cients on the model solution. Also, we further develop the 1D-
IRBFN method for solving high-order partial differential equations
(up to 6th-order) and use the method to solve the 2-D advection–
diffusion Eq. (1.4) and the depth-averaged 1-D Eq. (1.7) for both
the logarithmic and power velocity profiles.

The paper is organised as follows. Section 2 briefly describes the
centre manifold approach and its application to derive Eq. (1.7) for
the power and logarithmic velocity profiles. Section 3 presents the
1D-IRBFN numerical method, followed by the discussion of
numerical results in Section 4. Section 5 concludes the paper.

2. Centre manifold technique for advection–diffusion in an
open channel

In a shear channel flow, there are two competing factors gov-
erning the distribution of contaminants: (i) the cross-flow diffusion
which tends to quickly spread the contaminant in the vertical
direction and ensure smooth distribution in this direction and (ii)
the velocity shear which creates non-uniformity of the concentra-
tion across the channel because particles near the surface drift fas-
ter than particles near the bottom (Mercer and Roberts, 1990). As a
result of co-action of these factors, the contaminant concentration
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