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a b s t r a c t

We used electrocoagulation to reduce the chemical oxygen demand of dairy industry effluent. The effects
of operating parameters were evaluated, including the electric current density, initial effluent pH, elec-
trolysis time and distance between electrodes. The characteristics of the effluent, namely, the solids con-
tent and its fractions, turbidity and chemical oxygen demand, were also considered. An artificial neural
network was constructed to model chemical oxygen demand after electrocoagulation; it was trained and
validated, yielding a correlation coefficient of 0.96 between predicted and experimental values. Input
variables were ranked by their relative importance for the prediction of chemical oxygen demand after
treatment by electrocoagulation. Among effluent the Total Dissolved Solids concentration had the great-
est relative importance, followed by the chemical oxygen demand. It can be concluded that an artificial
neural network can predict chemical oxygen demand after treatment by electrocoagulation. In practice,
operating parameters may be adjusted to obtain a greater reduction of chemical oxygen demand and to
allow automation of the handling process.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Electrocoagulation (EC) is an electrochemical method that has
been developed in an attempt to improve upon traditional technol-
ogies for water and wastewater treatment [1,2]. This alternative
treatment has the potential not only to expand the treatment
capacity of traditional chemical–physical systems using the same
basic fundamentals of coagulation–flocculation but also to provide
elements that enhance the method, such as hydrogen generation in
the electrolysis step, yielding an upward flow of microbubbles that
interact with the bulk effluent [3].

Because of the complexity of the reactions involved in EC, it is
difficult to determine the kinetic parameters, leading to uncertain-
ties in the design and scale-up of reactors. A reliable model for any
wastewater treatment facility must provide a tool to predict its
performance and to control the operation of the process. Such a
tool can minimize operating costs and ensure the stability of the
operation of the station. This process is complex and achieves a
high degree of non-linearity due to the presence of biological con-
stituents that have high variability, making mechanistic modeling
difficult. Predicting the operating parameters of plants using con-

ventional experimental techniques are also time-consuming and
pose an obstacle to their implementation [4].

The artificial neural networks (ANNs) approach has several
advantages over traditional phenomenological or semi-empirical
models, since they require known input data set without any
assumptions. The ANN develops a mapping of the input and output
variables, which can subsequently be used to predict desired out-
put as a function of suitable inputs [5,6].

ANNs seek to develop computational models based on the
capacity of the human brain. Their main characteristics are
related to the ability to learn by example, to interpolate or
extrapolate based on standards provided and to select specific
features within the sample universe [5–8]. The basic unit for
information processing is the artificial neuron, which can receive
one or more inputs, transforming them into outputs. Each entry
has an associated weight that determines the intensity of its
influence on the output data [6–8]. The Multilayer Perceptron
(MLP) ANN is the most commonly used type because it is very
versatile and able to solve problems ranging from simple to com-
plex. Hidden layers are inserted between input and output layers
depending on the complexity of the problem and the desired
accuracy. In formulating the architecture of an ANN, the number
of layers and the number of neurons and connections between
neurons must be considered [5–7,9].
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The aim of this study was to evaluate the possibility of predict-
ing the final COD of effluent from a dairy industry, according to
effluent characteristics and the initial variables of EC treatment,
using ANN modeling. In addition, the relative importance of each
input variable on effluent COD after EC treatment was assessed.

2. Material and methods

2.1. Characterization of wastewater: Sampling and analysis

We used raw sewage from a dairy industry (15,000 L of milk per
day). The wastewater from different sections was gathered at a
junction box, which was selected as the sampling site.

The samples were collected using sampling methodology pro-
portional to flow (SMPF) and by simple sampling (SS). Of a total
of 275 samples collected, 143 were taken by SMPF, and 132 were
taken by SS. Composite samples were collected in 1-h intervals
for 8–17 h. Single samples were collected randomly throughout
the sampling period.

COD analyses were performed according to the colorimetric
method published by the American Public Health Association
(APHA) [10]. Samples were digested in a block digester (MARCONI,
Dry Block MA 4004). Absorbance readings of samples were per-
formed using a GBC spectrophotometer, model UV/VIS 911A, at a
wavelength of 600 nm.

The analysis of solids and their fractions was conducted in
accordance with gravimetric method 2540 APHA [10]. For pH mea-
surement, the potentiometric method was followed using a porta-
ble digital meter (DMPH DIGIMED, model 2), according to the
APHA [10]. Turbidity was measured following the method of the
APHA [10] using a TECNOPON-Model TB 1000 turbidimeter.

2.2. Assay of electrocoagulation

Following tests performed according to Valente et al. [11], EC
was conducted in batch reactions using a glass reactor
(300 � 200 � 135 mm) and aluminum electrodes. The effluent
temperature was maintained at 20 �C ± 2 �C during electrocoagula-
tion tests, close to the annual average temperature (19 �C) at the
dairy location. After each test, the polarity of the electrodes was
reversed to prevent electrode passivation.

EC tests, which were required to generate the information nec-
essary for the software to define the network topology, were per-
formed according to an experimental type fractional factorial
with a central point. Table 1 shows the EC trials using the liquid
effluent. Each test was repeated three times. This experiment
aimed to generate information about the behavior of EC treatment
with different levels of operating variables.

From data analysis of the tests, a 6 mm distance between elec-
trodes was selected; there was no difference in COD removal
among the distances tested, but larger distances required a higher

consumption of electricity. A rotatable central composite design
with three blocks was used to obtain the effects of the operating
variables (j, t and pH) in the region that showed the best results
in previous tests. This experimental design (Table 2) was con-
ducted in duplicate. The blocks corresponded to samples collected
on two different processing days.

Data analysis of tests revealed the need to expand the range of
electrolysis time and pH used. Therefore, another experimental
design was performed according to Table 3.

To improve generalization of the network, additional tests were
performed by setting the current density at 55.4 A m�2, the initial
pH at 5.0 and the distance between electrodes at 6 mm. The elec-
trolysis time was varied (10–50 min), and effluent samples were
collected by simple sampling, with the aim of promoting greater
variability in the input data relating to the characteristics of the
effluent. To increase variability in the data input, some samples
were treated by EC without pH adjustment. Thus, 275 assays were
completed for training, validation and testing of the artificial neu-
ral network.

The pH was adjusted, where necessary, with NaOH (1 mol L�1)
or H2SO4 (0.05 mol L�1) for the effluent to conduct different exper-
imental designs.

2.3. Modeling ANN

An ANN was constructed. A sigmoid transfer function (tansig)
with a Levenberg–Maquardt training algorithm was used to adjust
the network. To develop the architecture of the ANN, 275 trials of
dairy effluent treatment by EC were used and randomized into
subgroups: training (165 trials), validation (55 trials) and testing
(55 trials).

The number of input neurons was defined by input variables,
including effluent Total Solids (TS), Total Suspends Solids (TSS),
Total Dissolved Solids (TDS), turbidity and initial COD, as well as
operational variables, including initial pH, electrolysis time, dis-
tance between electrodes and current density. The output variable
was the COD obtained after treatment of the effluent by EC.

The number of hidden layers and the number of neurons in
these layers were defined by trial and error, and the best network
showed the best prediction of final COD values. In most cases, one
hidden layer is sufficient to resolve problems [7]. According to
Fletcher and Goss [12], an appropriate number of neurons in the
hidden layer can be found using (2

p
n + m to 2n + 1), where n is

the number of neurons in the input layer and m is the number of
neurons in the output layer.

2.4. Ordering of relative importance of input variables of ANN

To order the variables studied in terms of their relative impor-
tance to the value of the output variable COD after treatment by EC,
we used Garson’s equation [13]:
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Table 1
Design experiments for dairy wastewater treatment by EC.

Assay Initial
pH

Time
(min)

Current density (j)
(A m�2)

Distance
(mm)

1 5.0 5.0 37.0 6
2 9.0 5.0 37.0 14
3 5.0 25.0 37.0 14
4 9.0 25.0 37.0 6
5 5.0 5.0 61.6 14
6 9.0 5.0 61.6 6
7 5.0 25.0 61.6 6
8 9.0 25.0 61.6 14
9 7.0 15.0 49.3 10

10 7.0 15.0 49.3 10
11 7.0 15.0 49.3 10

Table 2
Operating variables and their levels in the treatment of liquid effluent from the dairy
industry by EC.

Variable Level

�1.633 �1 0 1 +1.633

Electrolysis time (min) 5.0 10.0 16.5 23.0 27.1
pH 4.2 4.5 5.0 5.5 5.8
Current density (A m�2) 46.5 49.2 53.5 57.8 60.5
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