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s u m m a r y

The limitations on an analytical solution to a groundwater management problem are tested with a field-
scale problem and a modification to the analytical solution is proposed. The management problem mini-
mizes the energy used for extracting water from the subsurface. The analytical solution depends on
assumptions of linearity, steady state conditions, and adequate water demand to activate all wells and
results in a stationarity condition that depends on initial lift and drawdown at each well. The field-scale
problem is an aquifer in California with large historical drawdown. Testing of the analytical solution
assumptions provides encouragement that the analytical solution may be useful to well-system operators
for practical application to minimize energy consumption for pumping.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Electrical energy consumption for groundwater pumping is sub-
stantial. It has been estimated by Water in the West (2013) that the
United States uses roughly 1–2% of total electricity production for
groundwater extraction. Assuming lift requirements of 150 ft
(46 m), Burton (1996), estimated that a typical municipal water
distribution system uses 0.6 MW h for each million gallons of
water processed. Wolff et al. (2004) cite various estimates from
California groundwater users for the amount of energy required
to extract one million gallons of groundwater that range from
0.54 to 2.3 MW h. Bennett et al. (2010) provides a similar range
of estimates; 0.9 to 2.9 MW h per million gallons of groundwater
extracted. This energy is expended to lift water from an aquifer
to the ground surface, overcome friction in pipes and pumps
and pressurize the water for introduction into surface-based
distribution systems or agricultural dispersal.

The energy required for lifting groundwater is often the largest
energy component in a water supply system. Its dominance in
energy consumption is exacerbated by the ongoing depletion of
groundwater in many aquifers caused primarily by sustained
pumping. The High Plains aquifer underlies parts of eight states.

Water level declines of more than 100 ft (30 m) as compared to
predevelopment levels have been observed in some areas; in other
areas the saturated thickness has been reduced by half (Bartolino
and Cunningham, 2003). In the Southwest United States, there
have been water level declines of 300–500 ft in Arizona and Las
Vegas has had up to 300 ft of groundwater level decline.
Antelope Valley, California, (the focus of this case study) located
on the western edge of the Mojave Desert, has had more than
200 ft of groundwater level decline, resulting in 6 ft of land subsi-
dence (Leighton and Phillips, 2003).

Groundwater management models that combine simulation
and optimization methods can be used to minimize energy costs
in multi-well systems. The energy consumed by pumping at a well
is related to the product of the pumping rate at the well and lift.
Lift is the difference between the head in the well and the head
at the point at which the water is discharged. In general, both
the head in the well and the head at the point of discharge are non-
linear functions of pumping. In some cases, the lift can be approxi-
mated as a linear function of pumping. For these cases, the product
of lift and pumping is a quadratic function of pumping rate.

To minimize pumping energy cost a typical optimization
formulation will simultaneously consider pumping across a
multi-well system. The sum of the products of lift and pumping
for each well is a measure of total system energy cost. This sum
is minimized by choice of pumping rates at the various wells.
The problem includes constraints that place lower bounds on
pumping at individual wells and requires that total withdrawal
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meets a specified demand. This formulation is described in detail in
the next section.

Ahlfeld and Laverty (2011), abbreviated herein as A&L, showed
that, under certain circumstances, an analytical solution to the
pumping energy minimization formulation, solved in the context
of a numerical groundwater model, exists. The analytical solution
has the feature that a metric computed from the pre-pumping lift
and the drawdown induced by pumping takes a constant value.
The pre-pumping lift, L, is the lift at a well when all managed wells
are off. The induced drawdown, s, is the additional lift at a well
caused by operation of all wells. A&L showed that, for many cases,
the metric L/2 + s will take the same value at each well when the
pumping, and associated drawdown, are optimal. The analysis
approach used by A&L followed that used by Katsifarakis (2008)
and Katsifarakis and Tselepidou (2009) who addressed the same
problem using analytical groundwater models and superposition.

Proof of the analytical solution of A&L required an assumption
that the head responds linearly to pumping and that total demand
is sufficient to cause all wells to operate at some pumping level
regardless of initial lift. A&L demonstrated their results on a
small hypothetical problem showing that introducing nonlinear
response (i.e. unconfined conditions) produced only a small varia-
tion in the L/2 + s metric at the optimal condition. In the present
paper, we further evaluate the limitations to the analytical solution
presented by A&L. We modify an existing simulation model for a
field site in California to produce a hypothetical model suitable
for this evaluation. The modified model includes features of
heterogeneity in hydraulic properties and boundary conditions
that might be encountered in actual field scale problems. We use
the modified model to examine cases in which demand is insuffi-
cient to force all wells to operate and a case in which unconfined
conditions are present. We solve the optimization formulation
using a Quadratic Programming algorithm.

In section two, the optimization formulation is described in
detail along with an outline of the analytical solution of A&L. In
section three, the California case study is introduced and the
method of solving the optimization problem is described. In sec-
tions four and five the results, discussion and conclusions are
presented.

2. Optimization formulations to minimize pumping energy

In this section, the minimize pumping energy formulation,
which minimizes the product of pumping and lift, is presented. A
brief review of past use of this formulation is presented. The ana-
lytical solution to the problem, as found by A&L, is presented and
the limitations described.

2.1. Minimize energy formulation

The minimize energy formulation is constructed to select
pumping rates to minimize the total energy use subject to a
requirement that the total pumping meets demand and pumping
rates be non-negative. For a single time period and multiple wells,
the formulation is written as:

Minimize Z ¼
Xn

i¼1

aQ iðHi � hiÞ

such that
Xn

i¼1

Q i ¼ D

ð1Þ

Q i � 0 _ i ¼ 1; . . . ;n

where Z is the objective function, n is the number of wells, Qi is the
withdrawal rate at well i, Hi is the reference elevation to which

water will be lifted at well i, hi is the head at well i, and D is the
demand that must be met with pumping. The constraint on demand
is stated as an equality; demand must be met, but the formulation
will never pump more water than is needed to meet the demand.
The final constraints set a lower bound on pumping; the analytical
solution requires no upper bound on pumping except that implicit
in the demand constraint. Each term of the objective function in (1)
gives a measure of the energy required to lift water during a speci-
fied time period. The coefficient on each term, a, includes terms to
convert from power to energy and takes the form

a ¼ Dtqg ð2Þ

where Dt is the duration of pumping, q is the density of the water
and g is the gravitational constant. The coefficient a can also include
friction loss factors, pump efficiencies, or any relevant conversion
factors for units or electricity costs. Earlier use and analysis of this
formulation has been conducted by Maddock (1972), Willis and
Yeh (1987), Ahlfeld and Mulligan (2000), Theodossiou (2004) and
Tsai et al. (2009).

The formulation can be written in terms of drawdown rather
than head as noted in Fig. 1. Defining hi

0 as the reference head at
location i (e.g. the head without any pumping), the head at any

pumping level can be described as hi ¼ h0
i � si where si is the draw-

down. Defining Li, the initial lift at location i, as Li = Hi � hi
0, and

substituting into the objective function in (1) yields

Z ¼
Xn

i¼1

aQ iðLi þ siÞ ð3Þ

The hydraulic head in (1) and the drawdown in (3) depend upon
the pumping rate decision variables. Using a Taylor series lin-
earization of head the problem can be converted to a quadratic
form. This is accomplished using response coefficients (Gorelick,
1983), so that the drawdown form of the objective takes the form

Z ¼
Xn

i¼1

aQ i Li þ
Xn

j¼1

ri;jQ j

 !
ð4Þ

where drawdown has been replaced with a linear function of pump-
ing rates that utilize response coefficients ri,j, which quantify the
change in head at pumping site i with change in pumping rate at
location j.

2.2. Analytical solution to the minimize pumping energy problem

For their analytical solution A&L consider steady state problems
and eliminate the non-negativity constraint in Eq. (1) by assuming
that demand will be high enough to cause all wells to be active.

Fig. 1. Schematic of drawdown and definition of dimensions for reference head, lift
and drawdown.
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