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We offer an explanation of the strongly tailed solute breakthrough curve typically observed when a tracer
test is conducted in fractured bedrock. In this example, we limit the model to a single planar fracture of
varying aperture. Flow heterogeneity derives from variable fracture aperture, which implies variable
transmissivity (T). The analysis employs a physically based model well-suited to strong heterogeneity
and relies only upon advective transport. The purely advective model is able to explain a power-law trend
of magnitude —2 to —3 in the breakthrough curve tail; a range that has been found in field tracer
experiments. The principle cause of this trend is the comparatively slow transport in zones of small
transmissivity (tight aperture). Slow advection occurs when either heterogeneity (variance of InT) is

strong or when the assumed heterogeneity distribution is non-Gaussian. Thus, we link breakthrough
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tailing to the statistical parameters for the transmissivity field.
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1. Introduction

When a non-reactive tracer is injected into a naturally or artifi-
cially flowing groundwater system, the late-time arrival of tracer at
a detection point is extended with respect to the early arrival. This
observation is referred to as a tracer breakthrough curve (BTC) tail-
ing and often exhibits a power law decline over time. A —1.5 expo-
nent of the tail is often observed in fractured media, which is
generally attributed to matrix diffusion and/or sorption kinetics
(e.g. Reimus et al., 2003; Cvetkovic et al., 2007). Exponents smaller
than —1.5, in the range —3 to —2, have been also often found in the
past (see, e.g., Becker and Shapiro, 2000, 2003; Kosakowski, 2004,
more reference can be found in the literature review of Willmann
et al., 2008), leading to the so-called “anomalous transport”. As
noted in the review by Zhou et al. (2007), considering only pore-
scale matrix diffusion will lead to an underestimation of break-
through tailing at the field scale, and explanations other than
matrix diffusion have been offered in the past. The power-law
BTC has been explained with many theoretical models including
continuous time random walk (Berkowitz, 2006), mobile-immobile
exchange (Haggerty and Gorelick, 1995; Haggerty et al., 2000),
fractional-order advection/dispersion (Benson et al., 2000), among
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other approaches (Zhang et al., 2007, 2009). Most of those explana-
tions invoke some local or non-local hydrodynamic dispersion and/
or diffusion to help explain the behavior. By contrast, field exam-
ples have shown that power-law tailing can be observed in the
absence of diffusion effects in highly heterogeneous velocity sys-
tems such as fractured bedrock (Becker and Shapiro, 2000, 2003).
Recent direct numerical simulations (Wang and Cardenas, 2014)
have shown a similar behavior at the core scale, observing an
increasing deviation from the Gaussian behavior of the BTC for
increasing fracture heterogeneity.

In this article, we examine the possibility that local dispersion,
diffusion and the presence of eddies can be removed from the
transport model entirely, and still account for strong tailing of
the BTC similar to power-law. That is, power-law tailing with expo-
nents in the range —3 to — 2 in tracer BTC's can be explained by
advection only. Similar problems were addressed by Wang and
Cardenas (2014) through detailed numerical simulations, while
our aim here is investigate them through a theoretical, physically
based, analytical approach, which is more amenable to generaliza-
tions. The key to our examination is the high degree of heterogene-
ity often encountered in the subsurface, i.e. we consider a wide
range in advective velocities that result from a highly heteroge-
neous conductivity field. We consider here fractured bedrock, in
which advective velocities are expected to vary widely. The theo-
retical and mathematical construct developed here, however, is
applicable to any highly heterogeneous transport system.
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The reason most often cited for the large variation in advective
velocities in bedrock fractures is that flow is constrained to the
two-dimensional domain of the fracture aperture. This invokes
the “local cubic-law” (LCL) of fluid flow which dictates average
flow rate at any location within a fracture is proportional to the
cube of the aperture (Oron and Berkowitz, 1998). In this case, a
local effective transmissivity (T) that relates local flow rate to local
hydraulic gradient, is also expected to vary as the cube of the
aperture. The LCL is not strictly valid under all circumstances. At
large Reynolds or Peclet numbers (Detwiler et al., 2000; Konzuk
and Kueper, 2004), in the presence of asperities or inclusions in
the aperture that may create eddies (Konzuk and Kueper, 2004;
Liu and Fan, 2012; Oron and Berkowitz, 1998; Qian et al., 2012)
or under conditions of hydromechanical dilation and/or normal
stress (Cornet et al., 2003; Gentier et al., 2013; Liu et al., 2013;
Witherspoon et al., 1980), the rate of flow may not scale with the
cube of the local aperture. However, for the development herein
we do not need to invoke the LCL directly; we assume only small
variations in aperture will cause large variations local advective
velocity.

Fracture apertures are expected to vary from zero (wall contact)
to about a mm in most competent bedrock systems. This variation
can occur over the scale of cm, however, leading to highly variable
velocity fields even within a single fracture. Reimus, for example
found estimated 8 orders of magnitude in local permeability vari-
ation in tuff samples on the order of 10 x 10 cm in size (Reimus,
1995). The greater the normal stress on the fracture, the greater
the contact area between the fracture walls (Gentier et al., 2013;
Liu et al., 2013; Watanabe et al., 2008). Increased contact area
(Watanabe et al.,, 2008; Witherspoon et al.,, 1980) and/or an
increase in the coefficient of variation in aperture (Lee et al,
2003) will likely lead to an increase in hydromechanical dispersion
and/or channeling.

There is unfortunately little field evidence of velocity distribu-
tion in bedrock fractures (Cvetkovic and Gotovac, 2013). Shapiro
and Hsieh (1998) performed injection tests over short intervals
in a crystalline granite/gneiss in central New Hampshire, USA,
and found up to 5 orders of magnitude variation in transmissivity.
Rutqvist et al. (1998) measured hydraulic apertures in granite
between 8 and 164 microns, implying 4 orders of magnitude of
T variability. Zhou et al. (2007) reviewed field tracer tests in frac-
tured bedrock and found ranges in equivalent aperture ranging
between 0.06 mm and 2.9 mm among different tests (implying 5
orders-of-magnitude variation in transmissivity). There is direct
evidence that flow channeling occurs in bedrock fractures
(Bourke, 1987; Moreno et al., 1985; Neretnieks, 1983, 1987;
Neretnieks et al., 1982). In some cases, flow channeling has been
imaged using ground penetrating radar (Becker and Tsoflias,
2010; Day-Lewis et al., 2006, 2003; Talley et al., 2005). The similar-
ity between flow channeling observed in cores (e.g. Reimus, 1995;
Watanabe et al.,, 2008) and in the field (e.g. Day-Lewis et al., 2002;
Talley et al., 2005) suggests that velocity gradients can be large and
occur at all scales in bedrock fractures.

Fracture apertures are often assumed to be lognormally dis-
tributed (Tsang and Neretnieks, 1998) but near gaussian distribu-
tions have also been measured (Bauget and Fourar, 2008; Lee
et al., 2003). Konzuk and Kueper (2004) measured apertures in a
fractured dolomite sample and initially found a lognormal distri-
bution. After the distribution was de-trended, however, the aper-
tures appeared to have a gaussian distribution. This suggests that
other reported distributions may be affected by non-stationarity
as well. For theoretical studies normal, log-normal, and tailed
distributions (e.g. Painter, 2001; Painter et al., 2002) have been
employed. Some authors have been able to reproduce laboratory
breakthrough experiments by measure apertures and using
small-perturbation theory to predict transport (Keller et al.,

1999; Lee et al., 2003). However, these samples had relatively
small coefficients of variation in aperture (between 0.4 and 0.82)
and were conducted over short distances (16-30 cm) which may
have contributed to the approximate agreement with small pertur-
bation theory. Other researchers have suggested that Fickian pro-
cesses are not sufficient to explain transport in fractures (Bauget
and Fourar, 2008; Wang and Cardenas, 2014).

In the following we present a model of pure advection in a sin-
gle, heterogeneous planar fracture. Flow heterogeneity derives
from variable fracture aperture, which implies variable transmis-
sivity (T). We employ a simplified but physically based analytical
approach suited for highly heterogeneous fields. The model is
therefore aimed at analyzing the BTC tailing and its relation to
relevant measurable features of the transmissivity field.

2. Modelling approach

Similar to what done for aquifers (see, e.g., Dagan, 1989; Rubin,
2003), we model the medium as a stationary, two-dimensional
(2D) random log-transmissivity (Y =InT) field, of distribution
f(Y), with mean (Y) =InT; (the geometric mean), variance o2
and isotropic two-point covariance; the transmissivity integral
scale I is finite and is assumed to be much smaller than the charac-
teristic length scale of the flow domain and of the solute plume. As
stated in the Introduction, the variance ¢ can be very large in frac-
tured systems, and thus a model suited to high heterogeneity is
needed. The analytical model employed here is a 2D variant of
the Self Consistent model (SCA) model which in the recent years
was extensively analyzed and tested against accurate, large-scale
numerical simulations (Jankovic et al., 2006; Fiori et al., 2006,
2007) as well as experimental data (Fiori et al., 2012, 2013). In this
method, the first-passage travel time (t) distribution f(t, x) is deter-
mined at a given control plane at a distance, x, from the source. For
a non-reactive tracer f(t,x) corresponds to the BTC at the same
control plane. The calculation of the travel time distribution
through the SCA method was originally proposed for 3D transport,
and it is extended here for the first time to 2D flows. The main
developments are briefly summarized in the following, and for fur-
ther details of the general procedure developed for 3D flows the
reader may refer to Fiori et al. (2006) or Cvetkovic et al. (2014).

The approach is to describe the transport medium as dense set
of circular inclusions of radius R and random Y = In T submerged in
a homogeneous matrix of effective transmissivity T.y. The velocity
field in the heterogeneous medium is represented as the sum of the
perturbation velocities associated with each isolated inclusion. The
neglected nonlinear interactions among the inclusions are mim-
icked through the background effective transmissivity Ty = Tk,
the geometric mean on transmissivity (Dagan, 1989). Along these
lines, the travel time t of a particle moving from x = 0 to x is the
sum of travel time disturbances TR, associated with the generic
inclusion j, which can be written as

j=N
t=()+> T (1)
j=1

where (t) = x/U is the mean and the residuals 7z are independent
random variables pertaining to the N > 1 blocks encountered by
the particle. The random residual 1z is derived by integration of
the velocity field along the trajectory, as follows.

We consider uniform flow of velocity U at infinity, aligned with
the longitudinal coordinate x;, past a circular, isolated inclusion of
radius R and transmissivity T, submerged in a medium of conduc-
tivity Tef. The velocity field V is given exactly by Eq. (1) of Fiori
et al. (2003), while the travel time residual 7 is calculated by inte-
gration of dx/Vy, as described by Eq. (2) of Fiori et al. (2006).
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