
Utilizing satellite precipitation estimates for streamflow forecasting
via adjustment of mean field bias in precipitation data and assimilation
of streamflow observations

Haksu Lee a,b,⇑, Yu Zhang a, Dong-Jun Seo c, Pingping Xie d

aNational Water Center, NOAA/National Weather Service, Silver Spring, MD, USA
b LEN Technologies, Oak Hill, VA, USA
cDepartment of Civil Engineering, The University of Texas at Arlington, Arlington, TX, USA
dClimate Prediction Center, NOAA/National Centers for Environmental Prediction, College Park, MD, USA

a r t i c l e i n f o

Article history:
Received 15 January 2015
Received in revised form 26 August 2015
Accepted 28 August 2015
Available online 5 September 2015
This manuscript was handled by
Konstantine P. Georgakakos, Editor-in-Chief,
with the assistance of Hamid Moradkhani,
Associate Editor

Keywords:
Satellite precipitation estimates
Data assimilation
Streamflow
Distributed hydrologic model

s u m m a r y

This study explores mitigating bias in satellite quantitative precipitation estimates (SQPE) and improving
hydrologic predictions at ungauged locations via adjustment of the mean field bias (MFB) in SQPE and
data assimilation (DA) of streamflow observations in a distributed hydrologic model. In this study, a vari-
ational procedure is used to adjust MFB in Climate Prediction Center MORPHing (CMORPH) SQPE and
assimilate streamflow observations at the outlet of Elk River Basin in Missouri into the distributed
Sacramento Soil Moisture Accounting (SAC-SMA) and kinematic wave routing models. The benefits of
assimilation are assessed by comparing the streamflow predictions with or without DA at both the outlet
and an upstream location, and by comparing the soil moisture grids forced by CMORPH SQPE against
those forced by higher-quality multisensor quantitative precipitation estimates (MQPE) from National
Weather Service. Special attention is given to the dependence of the efficacy of DA on the quality and
latency of the SQPE, and the impact of dynamic correction of MFB in the SQPE via DA. The results show
that adjusting MFB in CMORPH SQPE in addition to assimilating outlet flow reduces 66% of the bias in the
CMORPH SQPE analysis and the RMSE of 12-h streamflow predictions by 81% at the outlet and 34–62% at
interior locations of the catchment. Compared to applying a temporally invariant MFB for the entire
storm, the DA-based, dynamic MFB correction reduces the RMSE of 6-h streamflow prediction by 63%
at the outlet and 39–69% at interior locations. It is also shown that the accuracy of streamflow prediction
deteriorates if the delineation of the precipitation area by CMORPH SQPE is significantly different, as
measured by the Hausdorff distance, from that by MQPE. When compared with adjusting MFB in
the CMORPH SQPE over the entire assimilation window, adjusting the MFB for all but the latest 18 h
(i.e., the latency of CMORPH SQPE) within the assimilation window reduces the mean square error
(MSE)-based skill score of streamflow predictions at the outlet by up to 0.08 and at interior locations
by up to 0.13.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hydrologic forecasting requires timely and accurate quantita-
tive precipitation estimates (QPE). In many parts of the world,
however, access to high quality and low latency QPE (in situ and/
or weather radar-based) is limited. In the US, considerable gaps
exist in the coverage of the ground-based sensors for QPE (Zhang
et al., 2013). Poor ground-based sensing for QPE along the

US–Mexico border, for example, has been an issue for forecasting
streamflow for the Rio Grande River Basin. These gaps may be filled
by precipitation estimates from space-borne sensors (Kondragunta
et al., 2005), which include the estimates based on brightness
temperature observations from visible (VIS) and infrared (IR) sensors
aboard geostationary satellites, radiance observations from passive
microwave (PMW) sensors aboard low earth orbiters (LEO), and
reflectivity observations from space-borne radars (Kidd and
Levizzani, 2011). A number of techniques have been developed to
fuse observations from multiple satellite platforms for generation
of high-resolution QPE. They include the TRMM Multisatellite Pre-
cipitation Analysis (TMPA, Huffman et al., 2007), Self-calibrating
Multivariate Precipitation Retrieval (SCaMPR, Kuligowski, 2002;
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Kuligowski et al., 2013), the Climate Prediction Center MORPHing
technique (CMORPH; Joyce et al., 2004), the Lagrangian Model
(LMODEL; Bellerby et al., 2009), and Precipitation Estimation from
Remotely Sensed Information using Artificial Neural Networks
(PERSIANN; Hsu et al., 1997).

Theutility of satellite quantitativeprecipitation estimates (SQPE)
for hydrologic applications has been examined in Hossain and
Anagnostou (2004), Su et al. (2008), Bitew and Gebremichael
(2011), Gebregiorgis and Hossain (2012), Lee et al. (2014) and
others. ThoughSQPEs areplayingan increasingly large role inhydro-
logic applications, their limited accuracy is a major challenge for
operational hydrologic forecasting (Wilk et al., 2006; Boushaki
et al., 2009; Vila et al., 2009; Tobin and Bennett, 2010; Kuligowski
et al., 2013; Zhang et al., 2013; Lee et al., 2014). Large biases, false
detection and overrepresentation of precipitation areas are among
the issues with SQPE for streamflow prediction. In regions where
streamflow and soil moisture observations are available, however,
the above limitationsmay potentially be reduced by jointly utilizing
SQPE and hydrologic observations. Though spatially sparse, stream-
flowobservations are generally available in large river systems even
in remote areas. In the Rio Grande River Basin, for example, stream
gauge observations are readily available at downstream locations,
which may be used to reduce uncertainty in streamflow prediction
due to the paucity of ground-based precipitation observations in
upstream parts of the basin.

A potential mechanism for optimally combining hydrometeoro-
logical and hydrologic information is data assimilation (DA), which
is able to factor in the uncertainties in the observations and the
model in a dynamic fashion (Liu and Gupta, 2007). Assimilating
streamflow observations into rainfall–runoff models using
ground-based forcing data has been a popular study topic
(Weerts and El Serafy, 2006; Clark et al., 2008; Seo et al., 2009;
Lee et al., 2011, 2012; Rakovec et al., 2012; McMillan et al., 2013
and references therein). Despite the presence of this large body
of literature, however, there were few attempts that examined
the efficacy of DA as a tool for improving the quality in QPE – most
of the published DA studies employed streamflow as the main ver-
ification variable (Clark et al., 2008; Seo et al., 2009; Lee et al.,
2011, 2012; McMillan et al., 2013). In addition, utilizing SQPEs in
a DA procedure presents new practical challenges not seen in the
case of using ground sensor products, as SQPEs are known to be
subject to large bias, wide uncertainties caused in part by spatial
displacement, and have relatively long latency (Sorooshian et al.,
2011). On the other hand, the effects of assimilating streamflow
downstream on the predictive accuracy over interior points were
largely overlooked, in spite of the fact that many smaller catch-
ments are ungauged and the prediction over these locations has
been one of the key practical challenges. Rakovec et al. (2012)
showed that assimilating discharge observations at additional
upstream locations would improve streamflow prediction at the
outlet, but the work does not explicitly address the efficacy of
DA for improving flow predictions at interior points, an important
issue for regions with sparse stream gauge networks. Moreover, it
remains unclear how much improvement in streamflow prediction
can be attained by DA when the model is forced by highly uncer-
tain SQPE, and whether assimilation of streamflow would yield
meaningful improvement to the quality of SQPE given the fact that
DA seeks solutions in a highly underdetermined system.

The aim of this paper is to assess the impact of adjusting bias in
SQPE in addition to assimilating outlet flow observations on the
accuracy of adjusted SQPE, updated soil moisture and predicted
streamflow over the outlet, and, more importantly, interior points
from a distributed hydrologic model. To this end, we carry out a set
of assimilation experiments in which outlet flow observations are
assimilated into the NWS distributed hydrologic model for a catch-
ment in Missouri, and base model results are compared with DA

results at the outlet and, more importantly, interior points with
observed streamflow data. In this study, the operational radar–
gauge multisensor QPE (MQPE) and MQPE-driven soil moisture
and streamflow without assimilation are used as the benchmarks.
The work reported herein is similar in spirit with Crow and Ryu
(2009) in that we seek to improve skill in the prediction of stream-
flow and soil moisture through jointly utilizing multiple sources of
hydrometeorological and hydrologic observations within a DA
framework. It, however, offers new insights into the efficacy of
the assimilation approach in relation to the bias and spatial dis-
placement of SQPE, and data latency. Since stream gauge data is
potentially more accurate and frequent than satellite-based data
at a number of basins in the world, our study results can suggest
the utility of assimilating streamflow data in order to reduce bias
in SQPEs at a fine time scale – this enhances the utility of SQPEs
for flood prediction for fast-responding headwater basins outside
of the coverage of weather-radars or rain gauges. Contrasting to
off-line correction of bias in the precipitation data such as
Adjoint-Based OPTimizer (AB_OPT, Seo et al., 2009), real-time-
based correction of SQPEs via a variational assimilation technique
used in this study will assess the operational utility of SQPEs for
flood forecasting. The 4D Variational method used in this study
allows us to account for the lag time between precipitation and
discharge and therefore avoid excessive, non-physical adjustment
of state variables (Li et al., 2013; McMillan et al., 2013).

The remainder of the paper is organized as follows. Section 2
describes the methodology used in this study, including the hydro-
logic model, the assimilation technique, QPE data, DA issues inves-
tigated, evaluation metrics adopted, and the study area. Section 3
documents the results and discussion and Section 4 summarizes
findings and a concluding remark.

2. Methodology

In this section, we describe the hydrologic models and the
assimilation technique used along with CMORPH SQPE and MQPE.
Described subsequently in the rest of this section are DA issues
investigated, evaluation metrics adopted, and the study area used.

2.1. Hydrologic model

The rainfall–runoff and routing model used is the distributed
Sacramento Soil Moisture Accounting (SAC-SMA; Burnash et al.,
1973) and kinematic-wave routing models, respectively, as imple-
mented in the Hydrology Laboratory Research Distributed Hydro-
logic Model (HL-RDHM, Koren et al., 2004). The distributed SAC-
SMA model (Koren et al., 2004) is a gridded version of the concep-
tual lumped SAC-SMA model used operationally by most River
Forecast Centers (RFC) in the US. The distributed SAC-SMA model
generally operates on the so-called Hydrologic Rainfall Analysis
Project (HRAP; Reed and Maidment, 1999) grid mesh, which is
about 4-km in size and it is also the default grid mesh of NWS radar
and multisensor QPE. The model resolution can be adjusted
depending on the availability of fine-resolution precipitation input
and model parameters. The runoff in each grid box is computed
based on surface and subsurface flows generated from two subsur-
face storages, namely, the Upper Zone (UZ) and the Lower Zone
(LZ). The LZ is generally much thicker than the UZ and supplies
moisture to the atmosphere to meet the evapotranspiration
demands (Koren et al., 2014). Soil moisture states in the UZ and
LZ are represented by tension and free water contents as summa-
rized in Table 1. Tension water contents (UZTWC and LZTWC) are
related to soil moisture bounded to soil particles defined as
the difference between field capacity and wilting point and can
be removed only by evapotranspiration. Free water contents
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