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s u m m a r y

To control algal blooms, the stressor–response relationships between water quality metrics, environmen-
tal variables, and algal growth need to be better understood and modeled. Machine-learning methods
have been suggested as means to express the stressor–response relationships that are found when apply-
ing mechanistic water quality models. The objective of this work was to evaluate the efficiency of regres-
sion trees in the development of a stressor–response model for chlorophyll-a (Chl-a) concentrations, using
the results from site-specific mechanistic water quality modeling. The 2-dimensional hydrodynamic and
water quality model (CE-QUAL-W2) model was applied to simulate water quality using four-year obser-
vational data and additional scenarios of air temperature increases for the Yeongsan Reservoir in South
Korea. Regression tree modeling was applied to the results of these simulations. Given the well-
expressed seasonality in the simulated Chl-a dynamics, separate regression trees were developed for
months from May to September. The regression trees provided a reasonably accurate representation of
the stressor–response dependence generated by the CE-QUAL-W2 model. Different stressors were then
selected as split variables for different months, and, in most cases, splits by the same stressor variable
yielded the same correlation sign between the variable and the Chl-a concentration. Compared to phys-
ical variables, nutrient content appeared to better predict Chl-a responses. The highest Chl-a temperature
sensitivities were found for May and June. Regression tree splits based on ammonium concentration
resulted in a consistent trend of greater sensitivity in the groups of samples with higher ammonium
concentrations. Regression tree models provided a transparent visual representation of the stressor–
response relationships for Chl-a and its sensitivity. Overall, the representation of relationships using
classification and regression tools can be considered a useful approach to assess the state of aquatic
ecosystems and effectively determine significant stressor variables.

Published by Elsevier B.V.

1. Introduction

Excessive algal growth in freshwaters is globally recognized as a
detrimental phenomenon. Excess algae can hamper navigation,
deplete the oxygen stock in water, obliterate water clarity, cause
the appearance of toxins, result in fish kills, promote growth of
invasive algae species, ruin quality of surface waters for recre-
ational use, and substantially decrease property values. As such,
the monitoring and modeling of both algal growth and its physical
and chemical controls constitutes an important part of environ-
mental protection activities. Photosynthetic pigment content,
including chlorophyll-a (Chl-a) concentrations, are measured as a
surrogate for algal biomass because the cost and time required

for Chl-a measurement is less than that for measurements of algal
biomass. Chl-a is a response variable that is commonly used to
measure biotic productivity that reflects the nutrient enrichment
of a system. It is used in current numeric US EPA-approved criteria
to indicate water impairment by contaminant levels of nitrogen
and phosphorus (US EPA, 2013).

Trends and fluctuations of Chl-a concentrations can be used to
reflect the corresponding trends and fluctuations of both the chem-
ical parameters ofwater quality andphysical environmental param-
eters. For example, inter-annual variations of Chl-a were about one
order of magnitude in Lake Taihu in China (Xu et al., 2013), with
oscillations greater than 1.5 orders ofmagnitude thatwere recorded
during the ‘June through October’ periods in Oregon (Hoilman et al.,
2008). Strong seasonality in Chl-a has also been observed in a mul-
titude of lake monitoring studies, which is partially attributable to
different limiting factors (Conley et al., 2009; Elser et al., 1990;
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Hecky and Kilham, 1988). Nitrogen and phosphorus, for example,
were both found to be limiting factors in four shallow lakes in
Germany; there was a trend of phosphorus limitation in the spring,
yetnitrogen or light limitations later in the year (Kolzau et al., 2014).
Kim et al. (2014) cited empirical evidence that the abundance
and composition of algal assemblages in Lake Erie are determined
by resource competition for water temperature, irradiance, and
nutrient availability (i.e., nitrogen, phosphorus).

Development of stressor–response models has been proposed
as a way to quantify the relationships between Chl-a and its chem-
ical and physical controls, and to establish data-driven numerical
criteria on nutrient loads for receiving water bodies (Lamon and
Qian, 2008). Because these relationships are very complex, a single
statistical method that is fully applicable to a stressor–response
model at a specific site (US EPA 2010), with linear regression rela-
tionships often providing relatively low or no correlations (Huszar
et al., 2006; Napiórkowska-Krzebietke, et al., 2013), has yet to be
developed. In lieu of the relationship complexity, the establish-
ment of ‘Chl-a-nutrient’ relationships was recently attempted with
more complex statistical methods, such as principal component
regression (Cho et al., 2009a), Bayesian networks (Mutshinda
et al., 2013), and artificial neural networks (Millie et al., 2006).

Results of the mechanistic modeling of Chl-a dynamics have
also been used in attempts to develop stressor–response models.
Liu et al. (2014) applied an orthogonal test analysis and linear
regression to results obtained from Chl-a modeling under various
scenarios to distinguish the contributions of various driving forces
on the quality of lake water. Zou et al. (2010) suggested the use of
artificial neural networks to simulate stressor–response relation-
ships among water quality parameters derived from a mechanistic
model.

The sensitivity of Chl-a dynamics to climate change has been
studied based on mechanistic models and then generalized using
stressor–response modeling. The sensitivity to climate scenarios
under the same nutrient loads was investigated by Pätynen et al.
(2014) who observed relatively small changes in Chl-a concentra-
tions as temperature changed. Elliott (2012) noted that, in some
models, warmer water in the spring was related to an increase in
nutrient consumption by the phytoplankton community at some
lakes, which, to the advantage of some nitrogen-fixing cyanobacte-
ria, caused nitrogen limitations later in the year.

Given the complexity of the relationships between Chl-a
responses and leading stressors, different limiting factors can be
expected to dominate at different timeperiods, under different tem-
perature regimes and nutrient levels. Therefore, site-specific depen-
dencies between independent parameters and Chl-a concentrations
may be needed to describe stressor–response relationships and sen-
sitivities of Chl-a concentrations in a given environment. It was sug-
gested that classification algorithms be applied to distinguish
components of a database on eutrophication, inwhich different pre-
dictive stressor–response models may be needed (US EPA, 2010).

Regression trees are a powerful statistical methodology suitable
for building predictions based on preliminary classifications.
Regression trees have become widely used in a number of fields,
including environmental sciences (Kuhn and Johnson, 2013), they
are an efficient way to analyze and model of water quality data
(Jones et al., 2013; Martin et al., 2011), and they are well-suited to
identify the limiting factors (Sorrell et al., 2013). For example, Sass
et al. (2008) successfully applied regression trees to understand
Chl-a dynamics that were dependent on changes in precipitation
and evapotranspiration in shallow lakes. However, to the best of
our knowledge, regression trees have not yet been used to develop
stressor–response models that can predict Chl-a concentrations.

The objectives of this work were to evaluate the efficiency of
regression trees in the development of a stressor–response model
for Chl-a concentrations based on results from site-specific

mechanistic water quality modeling and to determine the sensitiv-
ity of these results to changes in temperature.

2. Materials and methods

2.1. Site description

The Yeongsan Reservoir (YSR), built in 1981 by damming the
downstream end of the Yeongsan River, is an estuarine reservoir
located in the southwestern region of Korea (Fig. 1). Located
23.5 km from the Mongtan Bridge, the Yeongsan Estuarine Dam
has a surface area of 34.6 km2 and an average depth of 10.1 m
(maximum depth: 21.9 m) (Lee et al., 2009). The annual freshwater
inflow to the YSR is, on average, 2.19 � 109 m3 and the annual dis-
charge though the dam gate is, on average, 1.65 � 109 m3. About
500 million m3 of water is annually used as a channel flow that
supplies freshwater to the Yeongam Reservoir (Park et al., 2014).
The main freshwater resource of the YSR is the Yeongsan River,
which flows through vast agricultural areas (1161 km2) and urbani
zation/industrialization areas (304 km2). The YSR was created to
prevent flooding in the surrounding region, supply agricultural
water, and facilitate recreation.

The water quality of the YSR has deteriorated since the damwas
constructed due to the accumulation of pollutants, such as organic
matter, nutrients, and heavy metals (Cho et al., 2009a; Kang et al.,
2009; Ki et al., 2007). Lee et al. (2009, 2010) reported that contam-
ination of water in the YSR has resulted in areas with hypoxic con-
ditions, and areas of high sediment accumulations, which have led
to a general decrease in biodiversity. Cho et al. (2009b) and Kim
et al. (2001) further noted that the YSR maintained eutrophic
conditions.

2.2. Modeling

The general flowchart of the modeling in this work is shown in
Fig. 2. The stressor–response model is comprised of a water quality

Fig. 1. Map of the Yeongsan Reservoir showing the location of water quality
monitoring stations.
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