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s u m m a r y

In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of
this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table
depth, soil moisture, or tracer data from relatively small river basins. In this paper, we focus on large-
scale hydrologic modeling and analyze the effect of parameter and rainfall data uncertainty on simulated
discharge dynamics with the global hydrologic model PCR-GLOBWB. We use three rainfall data products;
the CFSR reanalysis, the ERA-Interim reanalysis, and a combined ERA-40 reanalysis and CRU dataset.
Parameter uncertainty is derived from Latin Hypercube Sampling (LHS) using monthly discharge data
from five of the largest river systems in the world. Our results demonstrate that the default parameter-
ization of PCR-GLOBWB, derived from global datasets, can be improved by calibrating the model against
monthly discharge observations. Yet, it is difficult to find a single parameterization of PCR-GLOBWB that
works well for all of the five river basins considered herein and shows consistent performance during
both the calibration and evaluation period. Still there may be possibilities for regionalization based on
catchment similarities. Our simulations illustrate that parameter uncertainty constitutes only a minor
part of predictive uncertainty. Thus, the apparent dichotomy between simulations of global-scale
hydrologic behavior and actual data cannot be resolved by simply increasing the model complexity of
PCR-GLOBWB and resolving sub-grid processes. Instead, it would be more productive to improve the
characterization of global rainfall amounts at spatial resolutions of 0.5� and smaller.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hydrological models synthesize our knowledge of the rainfall–
storage–runoff transformation. These models are used widely for
flood forecasting, and investigation of water resources systems
and climate change, and use relatively simple mathematical equa-
tions to conceptualize and aggregate the complex myriad of spa-
tially distributed and highly interrelated water, energy and
vegetation processes in a watershed. As a result, most of the model
parameters in hydrologic models do not represent direct measur-
able quantities but can only be derived indirectly by calibration

against a historical record of input–output data (Beven and
Binley, 1992; Vrugt et al., 2005; Gosling and Arnell, 2011). In this
process the parameters are adjusted in such a way that the differ-
ence between the simulated model output and observations is
minimized (Gupta et al., 1998; Vrugt et al., 2003).

In the past decades much progress has been made toward the
development of efficient calibration strategies for hydrological
models and the treatment and quantification of uncertainty. Most
of this work has used relatively simple lumped and semi-
distributed hydrological models that represent watersheds with
area ranging between 100 and 10,000 km2 (Sorooshian and
Dracup, 1980; Gupta et al., 1998; Andréassian et al., 2001; Vrugt
et al., 2003; Muleta and Nicklow, 2005; Balin et al., 2010;
McMillan et al., 2010; Vaze et al., 2010, amongst many others).
Less attention has been paid to calibration of global hydrological
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models (GHMs) that attempt to simulate (predict) terrestrial-scale
soil moisture, recharge, surface runoff, groundwater table, and dis-
charge dynamics. Some notable exceptions include the recent work
of Troy et al. (2008), Gosling and Arnell (2011), Nasonova et al.
(2011) and Pappenberger et al. (2011). Not only do GHMs pose sig-
nificant computational challenges, they also require a wealth of
input data to accurately characterize global scale variations in
land-use, soil type, elevation, climate conditions, and groundwater
table depths (amongst others). Yet, all these data exhibit a large
spatial variability and high degree of uncertainty which compro-
mises, sometimes severely, the predictive capability of GHMs
(Beven and Cloke, 2012; Duan et al., 2006; Teuling et al., 2009).

The lack of high-quality and high-resolution input and forcing
data, and considerable CPU-requirements of GHMs, necessitates
the use of a very coarse grid resolution to resolve global scale
hydrologic fluxes and state variables (Haddeland et al., 2011). This
introduces a very high level of process aggregation, which
unavoidably introduces significant structural errors and requires
appropriate sub-grid parameterization (Beven and Cloke, 2012).
Moreover, the (discharge) datasets available for model evaluation
are limited and their accuracy and reliability varies considerably
over the world (Renard et al., 2010). Consequently appropriate
parameterizations will not be spatially uniform and can only be
tested and optimized locally (Beven and Cloke, 2012; McMillan
et al., 2010).

Several contributions can be found in the hydrological literature
that have investigated the role of parameter and forcing data uncer-
tainty in GHMs. For instance, Fekete et al. (2004) analyzed the influ-
ence of precipitation data uncertainty on simulated global runoff
with the UHN global water balance model. The uncertainty in
simulated runoff was of similar size as the uncertainty in the pre-
cipitation and especially large in semi-arid regions. A similar study
by Biemans et al. (2009) used the global vegetation and hydrology
model LPJmL to evaluate seven precipitation datasets for discharge
simulation of 294 basins. The uncertainty in simulated discharge
was found to be about three times higher than the uncertainty in
basin average precipitation. These findings make a strong case
for hydrological model calibration using the meteorological dataset
selected for the final model application. Pappenberger et al. (2011)
concluded that the quality of meteorological data has improved
considerably in the past decade, which hence should improve our
ability to simulate the hydrology of large river basins.

Recent studies by Gosling and coworkers have investigated the
sensitivity of the Mac-PDM.09 GHM to parameter and forcing (pre-
cipitation) data. The study of Gosling et al. (2010) used fourteen
different model simulations to determine the sensitivity of the
model output to variations in the field capacity and variability of
the soil moisture capacity. The second study, published in
Gosling and Arnell (2011) used an ensemble of 9 different scenar-
ios from 21 different GCMs to analyze the impact of forcing data
uncertainty. More recently, Nasonova et al. (2011) investigated
the effect of different forcing datasets on the SWAT simulated
water balance. Results demonstrate that the simulated surface run-
off strongly depends on the precipitation dataset being used. This
finding is perhaps not surprising, but highlights the need for accu-
rate forcing data and information on river regulation in global
hydrologic modeling.

Several other recent studies have focused attention on the effect
of model selection in global hydrologic modeling. For instance,
Haddeland et al. (2011) combined several Land Surface Models
(LSMs) and GHMs in the WATCH project to generate a multi-
model ensemble of the global water cycle. The ensemble of simu-
lations exhibited a large spread, even though the constituent mod-
els resolved similar processes, but with differing parameter values.
Gudmundsson et al. (2011) also conducted a multi-model compar-
ison in the context of the WATCH project and demonstrated that

the ensemble spread was particularly large during low flow events,
but the ensemble mean reliably estimated mean and extreme
flows.

Thus far, we have focused our attention on contributions whose
main goal was to illustrate the effect of parameter, model, or forc-
ing data uncertainty in global hydrologic modeling, without
recourse to parameter estimation. Several authors have focused
on global scale parameter estimation. For instance, Fekete et al.
(2002) used a correction factor in the WBMplus model to match
discharge data from neighboring stations. Troy et al. (2008)
calibrated their global scale hydrological model at only 2% of the
grid cells, and used the remaining cells to explore the potential
for regionalization of the parameters and to assess sub-basin vari-
ability. Another study by Döll et al. (2003) considered the calibra-
tion of the GHM WaterGAP model. This work demonstrated that
careful tuning of the runoff coefficient significantly improved the
agreement between the observed and simulated discharge data.
Widén-Nilson et al. (2007) calibrated the global water balance
model WASMOD-M using measurements of average areal
discharge, thereby avoiding problems of flow regulation. Basin
specific values of the WASMOD-M model parameters were
selected from a sample of 1680 different parameter combinations.
Wood et al. (1992) calibrated the global VIC model using the well-
known Shuffled Complex Evolution (SCE) algorithm (Duan et al.,
1992; Nijssen et al., 2001). Calibration reduced the annual average
bias and the relative Root Mean Square Error (RMSE) of the
monthly discharge values from 62 to 37% and 29 to 10%,
respectively.

Altogether, published studies demonstrate that calibration of
GHMs is difficult, and hampered by (1) a lack of quality and
high-resolution input data to accurately characterize surface and
subsurface properties, (2) significant uncertainty in the forcing
data, (3) high computational demands, and (4) limited availability
of reliable discharge observations. The present study will show
that rainfall uncertainty constitutes the largest source of error
in global scale hydrologic modeling, while parameter uncertainty
explains only a minor source of streamflow simulation uncer-
tainty. Our analysis is based on a single model, and unlike previ-
ous studies jointly considers the effect of parameter and rainfall
data uncertainty in modeling discharge dynamics of some of the
largest rivers in the world. We also investigate the merits of cal-
ibration of PCR-GLOBWB for each meteorological forcing dataset
individually.

This paper is organized as follows. Section 2 presents an over-
view of the different meteorological datasets and river basins used
herein. This is followed by a short description of PCR-GLOBWB and
its most important calibration parameters, and a brief explanation
of Latin Hypercube Sampling (LHS) used to quantify parameter
uncertainty. In Section 3 we report some of the main findings of
our study and present the simulated hydrograph uncertainty
ranges for each different river basin and forcing dataset. Here, we
are especially concerned with a comparison of the simulated dis-
charge dynamics with their observed counterparts, and investigate
whether the simulation (prediction) uncertainty of PCR-GLOBWB
decreases by down sampling of the original behavioral parameter
sets. Section 4 summarizes our main conclusions and provides an
outlook for future work.

2. Data and methods

2.1. Meteorological forcing

Three different meteorological forcing datasets are used in this
paper. This includes: (1) a combination of the dataset of the
Climate Research Unit of the University of East Anglia
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