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s u m m a r y

In this study, a fractional factorial probabilistic collocation method is proposed to reveal statistical
significance of hydrologic model parameters and their multi-level interactions affecting model outputs,
facilitating uncertainty propagation in a reduced dimensional space. The proposed methodology is
applied to the Xiangxi River watershed in China to demonstrate its validity and applicability, as well
as its capability of revealing complex and dynamic parameter interactions. A set of reduced polynomial
chaos expansions (PCEs) only with statistically significant terms can be obtained based on the results of
factorial analysis of variance (ANOVA), achieving a reduction of uncertainty in hydrologic predictions. The
predictive performance of reduced PCEs is verified by comparing against standard PCEs and the Monte
Carlo with Latin hypercube sampling (MC-LHS) method in terms of reliability, sharpness, and
Nash–Sutcliffe efficiency (NSE). Results reveal that the reduced PCEs are able to capture hydrologic
behaviors of the Xiangxi River watershed, and they are efficient functional representations for
propagating uncertainties in hydrologic predictions.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hydrologic models make use of simple mathematical equations
to conceptualize physical behaviors of natural systems that involve
complex interactions between the atmospheric, land surface, and
subsurface components of the water cycle (Moradkhani et al.,
2005). Due to the spatial heterogeneity of hydrologic systems
and the scarcity of data, many parameters that represent
hydrologic properties cannot be exactly identified. Moreover,
certain parameters may be well-defined at a point-scale but not
a mesh-scale or at a catchment scale, resulting in poor parameter
identifiability. Thus, hydrologic parameters are often modelled as
random variables. When uncertainties exist in the form of random
variables, effective characterization and propagation are crucial for
robust hydrological modelling (Konda et al., 2010).

Uncertainty propagation in various stochastic systems has been
extensively studied over the past decade (Kunstmann and Kastens,

2006; Le Maître et al., 2004; Oladyshkin et al., 2011; Quintero et al.,
2012; Wang et al., 2012, 2013b; Yen et al., 2014; Zhang and
Sahinidis, 2012). Monte Carlo methods and their variants (e.g.,
Latin hypercube sampling) are some of the most widely used
methods for uncertainty analysis (Oladyshkin and Nowak, 2012).
These methods rely on repeated random sampling to obtain
numerical results expressed as probability distributions. Thus their
accuracy depends on the number of realizations of random param-
eters. The brute-force Monte Carlo simulation is straightforward to
implement; however, its main limitation is the requirement of a
large computational power, especially for large-scale problems
(He et al., 2012; Li and Zhang, 2007; Wang et al., 2014).

As an attractive alternative, polynomial chaos expansion (PCE)
techniques that originate from the homogeneous chaos theory
proposed by Wiener (1938) represent a stochastic process by a
spectral expansion based on Hermite orthogonal polynomials in
terms of Gaussian random variables (Lin and Tartakovsky, 2009).
For stochastic systems that involve physical parameters with
non-Gaussian distributions, Xiu and Karniadakis (2002) further
developed a generalized PCE to represent various stochastic pro-
cesses with different types of orthogonal polynomials in order to
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achieve the optimal convergence rate. PCE offers an efficient way of
characterizing nonlinear effects in stochastic analysis and repre-
sents the dependency of model outputs on uncertain input param-
eters by a set of high-dimensional orthogonal polynomials. This is
achieved by projecting the model response surface onto a basis of
orthogonal polynomials in the probabilistic parameter space
(Oladyshkin et al., 2011). PCE-based methods have been exten-
sively used in various fields, such as transport and flow in porous
media (Ghanem, 1998; Laloy et al., 2013; Liao and Zhang, 2013),
computational fluid dynamics (Mathelin et al., 2005; Najm,
2009), multibody dynamic systems (Sandu et al., 2006), as well
as environmental and biological systems (Isukapalli et al., 1998).

In terms of the propagation of uncertainty from model parame-
ters to outputs, PCE falls into two categories for the involved pro-
jection integrals: intrusive and non-intrusive approaches (Najm,
2009). The intrusive approaches rely on a Galerkin-projection
reformulation of the original model equations to solve for the
coefficients in the expansion (Ghanem and Spanos, 1991). These
approaches require reformulating and solving a coupled system
of deterministic and ordinary differential equations, which may
become complex and cumbersome due to necessary symbolic
manipulations, especially when there are a large number of the
PCE coefficients to be determined. The non-intrusive approaches
evaluate the coefficients in the expansion by employing determin-
istic sampling of the original model that can be treated as a black
box, and require no manipulation of underlying partial differential
equations. Thus, the non-intrusive approaches have been receiving
increasing attention. Tatang et al. (1997) developed a probabilistic
collocation method (PCM), which was particularly useful for uncer-
tainty analysis of the computationally demanding problems
because the PCM was nonintrusive and its implementation was
relatively straightforward. The PCM can be used to compute the
PCE coefficients by using the model outputs at selected collocation
points. However, since the number of required collocation points is
always smaller than the number of available Gaussian quadrature
points, it is difficult to select the appropriate collocation points to
construct the functional approximation (Wei et al., 2008). To
address the shortcoming of the standard collocation technique,
Isukapalli et al. (1998) proposed a stochastic response surface
method to evaluate the PCE using a regression-based method.
The regression method facilitates better approximations of model
outputs by performing a larger number of model simulations.
However, the number of sample points used in the regression
method must be twice the number of unknown coefficients in
order to obtain robust estimates, resulting in an enormous
computational demand (Isukapalli, 1999).

In recent years, the PCM and its variants have been successfully
applied to various fields (Fajraoui et al., 2011; Li et al., 2009; Müller
et al., 2011; Zheng et al., 2011). For example, Shi et al. (2009) took
advantage of the PCM to study the nonlinear flow in heterogeneous
unconfined aquifers. Liao and Zhang (2013) proposed a new
location-based transformed PCM for the stochastic analysis of geo-
physical models under strongly nonlinear conditions. Sun et al.
(2013) used the PCM to assess leakage detectability at geologic
CO2 sequestration sites under parameter uncertainty. In previous
studies, the existing methods often suffer from issues resulting
from high dimensionality. As the number of random variables
increases, the number of available collocation points increases
exponentially. The PCM then becomes unstable for evaluating the
PCE with a high-dimensional parameter space. This is because
the response surface has to intersect all the collocation points in
order to well represent the relationship between model inputs
and outputs in terms of random variables, and each of the colloca-
tion points in the model space can significantly affect the behavior
of the orthogonal polynomial. Further, to ensure the robustness of
the PCM, all combinations of sample points chosen according to

the Gaussian quadrature rule should be taken into account for
estimating the coefficients of the PCE. However, such a collocation
scheme may become too complicated and computationally
unrealistic.

To address the above issues, the objective of this study is to pro-
pose a computationally efficient fractional factorial probabilistic
collocation method for propagation of uncertainties in hydrologic
model parameters. Since each term in the PCE has different contri-
butions to the variability of the functional response, the proposed
method is capable of revealing statistical significance of linear,
nonlinear (i.e., second- and higher-order), and interaction PCE
terms. The terms that have little effects on the outputs of the func-
tional approximation can thus be discarded, leading to a reduced
PCE only with statistically significant terms. Such a truncated
expansion in orthogonal polynomials is necessary to ease the com-
putational effort, especially for large-scale stochastic hydrologic
systems with a high-dimensional parameter space. The proposed
methodology will be applied to the Xiangxi River watershed by
using the HYMOD conceptual hydrologic model to demonstrate
its validity and applicability, as well as its capability of revealing
mechanisms embedded within a number of hydrological
complexities. A set of reduced PCEs will be obtained for streamflow
simulations, and the derived uncertainty intervals of daily
streamflows will then be compared against those from standard
PCEs as well as those from the MC-LHS method. The probabilistic
performance measures of reliability and sharpness will be used
to evaluate the predictive capacities of different approaches. A
further comparison between HYMOD, PCEs, and reduced PCEs will
also be performed in terms of accuracy and efficiency. NSE will be
used for calibration and validation against observed data in order
to test the credibility of reduced PCEs for capturing hydrologic
behaviors of the Xiangxi River watershed.

This paper is organized as follows. Section 2 reviews basic
concepts of PCE and PCM. Section 3 introduces the proposed
methodology. Section 4 presents a case study of the conceptual
hydrologic model applied to the Xiangxi River watershed, China.
In this section, detailed discussions of results and comparisons of
various methods are presented. Finally, conclusions are presented
in section 5.

2. Polynomial chaos and probabilistic collocation methods

The PCE, introduced by Wiener (1938), is a powerful tool for
characterizing uncertainties in model outputs through a series
expansion of Hermite polynomials in terms of standard random
variables. Consider a model yt = f (h, xt, ut) where xt is the (internal)
state vector, ut is the input vector, and h represents the vector of
time-invariant model parameters. When model parameters are
considered as random variables, yt represents model outputs from
hydrologic simulations in a probabilistic space, and can be approx-
imated as multivariate orthogonal polynomials. The vector h can be

expressed as T[n(h)], where nðhÞ ¼ n1ðh1Þ; . . . ; nnðhnÞ½ �T is a vector of
standard normal random variables with zero mean and unit vari-
ance. To standardize the representation of random variables, a
variety of transformations in terms of standard normal random
variables are presented by Isukapalli (1999). Then the hydrologic
model output can be approximated by a PCE, given by

ytðh; xt ; utÞ¼ a0tðxt ; utÞþ
X1
i1¼1

ai1tðxt ; utÞC1 ni1 ðhi1 Þ
� �

þ
X1
i1¼1

Xi1
i2¼1

ai1 i2tðxt ; utÞC2 ni1 ðhi1 Þ;ni2 ðhi2 Þ
� �

þ
X1
i1¼1

Xi1
i2¼1

Xi2
i3¼1

ai1 i2 i3tðxt ;utÞC3ðni1 ðhi1 Þ;ni2 ðhi2 Þ;ni3 ðhi3 ÞÞþ . . . ; ð1Þ
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