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s u m m a r y

Forecast reliability and accuracy is a prerequisite for successful hydrological applications. This aim may
be attained by using data assimilation techniques such as the popular Ensemble Kalman filter (EnKF).
Despite its recognized capacity to enhance forecasting by creating a new set of initial conditions, imple-
mentation tests have been mostly carried out with a single model and few catchments leading to case
specific conclusions. This paper performs an extensive testing to assess ensemble bias and reliability
on 20 conceptual lumped models and 38 catchments in the Province of Québec with perfect meteorolog-
ical forecast forcing. The study confirms that EnKF is a powerful tool for short range forecasting but also
that it requires a more subtle setting than it is frequently recommended. The success of the updating
procedure depends to a great extent on the specification of the hyper-parameters. In the implementation
of the EnKF, the identification of the hyper-parameters is very unintuitive if the model error is not
explicitly accounted for and best estimates of forcing and observation error lead to overconfident fore-
casts. It is shown that performance are also related to the choice of updated state variables and that
all states variables should not systematically be updated. Additionally, the improvement over the open
loop scheme depends on the watershed and hydrological model structure, as some models exhibit a poor
compatibility with EnKF updating. Thus, it is not possible to conclude in detail on a single ideal manner to
identify an optimal implementation; conclusions drawn from a unique event, catchment, or model are
likely to be misleading since transferring hyper-parameters from a case to another may be hazardous.
Finally, achieving reliability and bias jointly is a daunting challenge as the optimization of one score is
done at the cost of the other.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Despite the modelling advances in representing hydrological
processes and providing more accurate streamflow forecasts, there
is still a need for reducing and quantifying uncertainty. Most
hydrological prediction systems are still deterministic and provide
only the most likely outcome without addressing estimates of their
uncertainty. The sources of uncertainty stem from multiple places
in the hydrometeorological chain such as in inputs, initial condi-
tions, parameter estimation, model structure, and outputs (e.g.
Ajami et al., 2007; Salamon and Feyen, 2010; Liu and Gupta,
2007; Liu et al., 2012) and these uncertainties should be deci-
phered to enhance model predictive abilities and reliability for effi-
cient decision making (Ramos et al., 2010).

A broad range of techniques has been developed to control
uncertainty at different levels such as the Generalized Likelihood
Uncertainty Estimation (GLUE), Shuffle Complex Evolution Metro-

polis algorithm (SCEM) for parameter uncertainty (Beven and
Binley, 1992; Vrugt et al., 2003) and BMA combination technique
for structural uncertainty (Jeremiah et al., 2011; Duan et al.,
2007; Parrish et al., 2012; Ajami et al., 2007). Proper initial
conditions are frequently identified as one of the main factors that
contributes to an accurate forecast (DeChant and Moradkhani,
2011; Lee et al., 2011). Among others, data assimilation (DA) is
commonly used in hydrometeorology to reduce initial condition
uncertainty and proved to be a useful tool for modelling. DA incor-
porates observations into the numerical model to issue an analysis,
which is an estimation of the best current state of the system. This
has not only been largely applied to remote sensing for snow
(Kuchment et al., 2010), soil moisture estimates (Forman et al.,
2012; Meier et al., 2011; Renzullo et al., 2014; Alvarez-Garreton
et al., 2014) or hydraulic information (Bailey and Bau, 2012), but
also to update radar forcing (Harader et al., 2012; Kim and Yoo,
2014). Many applications also use in situ observations such as
catchment discharge, snowpack measurements, or soil moisture
to update models (e.g., Seo et al., 2009; Clark et al., 2008; Thirel
et al., 2010; DeChant and Moradkhani, 2011; Franz et al., 2014).
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In addition, DA may be coupled with parameter optimization
(Vrugt et al., 2005; Moradkhani et al., 2005; Nie et al., 2011).

Sequential DA techniques such as particle filter and the Kalman
filter family are frequently used for recursive updating of the states
of a system, each time an observation is made available. Among
them, the Ensemble Kalman filter (EnKF, Evensen, 1994) proved
to be a powerful tool for hydrological forecasting (DeChant and
Moradkhani, 2012; Rakovec et al., 2012; Vrugt and Robinson,
2007; Weerts and El Serafy, 2006; Abaza et al., 2014) that is effec-
tive and reliable enough for operational use (Andreadis and
Lettenmaier, 2006). Several studies claim that they developed
techniques that improved upon traditional EnKF (e.g., Clark et al.,
2008; Whitaker and Hamill, 2002) by focusing on the relaxation
of constrains of traditional EnKF implementation, or by explicitly
including time lag between the soil moisture and the discharge
in the updating process (Li et al., 2013, 2014; McMillan et al.,
2013).

A key feature of EnKF is the proper specification of hyper-
parameters (perturbations of inputs and outputs) and model states
to be updated (Moradkhani et al., 2005). In most studies, EnKF
implementation is based on an a priori selection of the hyper-
parameters and updated states combination, which is then scarcely
justified. Noteworthy exceptions are Moradkhani et al. (2005) and
Chen et al. (2013), but these studies are very specific as they are
performed on a single model and one or two catchments. Accurate
perturbations representing error estimates are crucial since the
EnKF updating scheme is based on the weighting of the model
and observation relative error. However this specification is com-
plex in practice as the different sources of uncertainty experience
strong interactions (Moradkhani et al., 2006; Hong et al., 2006;
Kuczera et al., 2006). Several attempts to account explicitly for
structural error have been reported, for example by directly adding
perturbations to the state variables (Reichle et al., 2002; Vrugt
et al., 2006; Clark et al., 2008), or by updating model parameters
(Moradkhani et al., 2005; Vrugt et al., 2005; Naevdal et al., 2003).

Moreover, despite encouraging results, DeChant and
Moradkhani (2012) point that little research has been done to
examine the effectiveness and robustness of EnKF and that
‘‘studies need to provide a more rigorous testing of these
techniques than has previously been presented”. Another issue
that needs consideration is that EnKF performance is mostly
discussed as ‘standalone’, regardless of the influence of the
coupling with the hydrological model. This is mainly due to the
fact that EnKF is often tested on a single model. Thus, the question
of adequacy between the DA technique and the model is rarely
assessed.

The present study aims at identifying EnKF parametrization to
reduce and quantify optimally the uncertainty related to initial
conditions in a forecast mode. A second scope addresses the ques-
tion of EnKF and hydrological model adequacy. In order to achieve
this, the analysis is conducted on 20 structurally dissimilar lumped
conceptual models, 38 catchments, 12 hyper-parameter sets, and
all possible combinations of the state variables to strive for general
results. Finally, the effectiveness of identifying the best EnKF
parametrization without exploring all combinations is discussed.

Section 2 presents EnKF’s basics, models, basins and scores.
Section 3 presents the results of the DA techniques followed by a
discussion and the conclusion statements are provided in
Section 4.

2. Material and methods

2.1. Hydrological models, snowmelt modules, and PET

The EnKF is tested individually on 20 lumped conceptual
models, which differ by their structure. The selection was initially

carried out by Perrin (2000) and revised by Seiller et al. (2012) for
hydrological projection purposes. Because they are based on
diverse hydrological concepts and present different degrees of
complexity (4–10 calibrated parameters and 2–7 reservoirs to
represent perceptual and conceptual hydrologic processes), they
allow to test the EnKF in a comprehensive manner according to
structure diversity (see Table 1). The models have been modified
to match a common frame and they should not be directly
compared to their original version. In the case where the original
models included a module to compute evapotranspiration or snow
accumulation and melting, the module has been omitted as these
processes are computed externally beforehand.

The models exploit various conceptualizations and thus their
parameters and state variables perform particular roles in simulat-
ing rainfall–runoff processes. Their reservoirs may describe
systems ranging from precipitation interception to routing
(or more conceptual functions). The role of state variables is not
detailed in the article for concision purpose. For the same reason,
the state variable values before and after the analysis step will
not be discussed here but only the outputs of the models, i.e.,
simulated streamflow will be considered. For further details on
state variable meaning, refer to Perrin (2000).

The lumped models are driven by potential evapotranspiration
and precipitation. The potential evapotranspiration is computed
from the formula proposed by Oudin et al. (2005), which relies
on mean air temperature and the calculated extraterrestrial
radiation. To partition snow accumulation, snowmelt, and liquid
precipitation, the snow module (Cemaneige, Valery et al., 2014)
is executed before hydrological models.

Table 1
Main characteristics of the 20 lumped models (Seiller et al., 2012).

Model
acronym

Number of
optimized
parameters

Number of
reservoirs

Derived from

M01 6 3 BUCKET (Thornthwaite
and Mather, 1955)

M02 9 2 CEQUEAU (Girard et al.,
1972)

M03 6 3 CREC (Cormary and
Guilbot, 1973)

M04 6 3 GARDENIA (Thiery, 1982)
M05 4 2 GR4J (Perrin et al., 2003)
M06 9 3 HBV (Bergström and

Forsman, 1973)
M07 6 5 HYMOD (Wagener et al.,

2001)
M08 7 3 IHACRES (Jakeman et al.,

1990)
M09 7 4 MARTINE (Mazenc et al.,

1984)
M10 7 2 MOHYSE (Fortin and

Turcotte, 2007)
M11 6 4 MORDOR (Garçon, 1999)
M12 10 7 NAM (Nielsen and

Hansen, 1973)
M13 8 4 PDM (Moore and Clarke,

1981)
M14 9 5 SACRAMENTO (Burnash

et al., 1973)
M15 8 3 SIMHYD (Chiew et al.,

2002)
M16 8 3 SMAR (O’Connell et al.,

1970)
M17 7 4 TANK (Sugawara, 1979)
M18 7 3 TOPMODEL (Beven et al.,

1984)
M19 8 3 WAGENINGEN

(Warmerdam et al., 1997)
M20 8 4 XINANJIANG (Zhao et al.,

1980)
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